
Contents

1.1 HOW TO USE
1.2 CONTRIBUTE

1 WELCOME TO THE FREECAD ON-LINE HELP

2.1 ABOUT THE FREECAD PROJECT
2.2 RELEASE NOTES

2.3 KEY FEATURES
2.4 GENERAL FEATURES

2.5 IN DEVELOPMENT
2.6 EXTRA WORKBENCHES

2 INTRODUCTION

3.1 INSTALL ON WINDOWS
3.1.1 SIMPLE MICROSOFT INSTALLER INSTALLATION

3.1.2 COMMAND LINE INSTALLATION

3.1.2.1 NON-INTERACTIVE INSTALLATION

3.1.2.2 LIMITED USER INTERFACE

3.1.2.3 TARGET DIRECTORY

3.1.2.4 INSTALLATION FOR ALL USERS

3.1.2.5 FEATURE SELECTION

3.1.3 UNINSTALLATION

3.1.4 ADMINISTRATIVE INSTALLATION

3.1.5 ADVERTISEMENT

3.1.6 AUTOMATIC INSTALLATION ON A GROUP OF MACHINES

3.1.7 INSTALLATION ON LINUX USING CROSSOVER OFFICE

3.2 INSTALL ON UNIX/LINUX
3.3 UBUNTU AND UBUNTU-BASED SYSTEMS

3.3.1 OFFICIAL UBUNTU REPOSITORY

3.3.2 LATEST STABLE RELEASE FROM THE "STABLE RELEASES" PPA OR "DAILY" PPA

3.3.2.1 INSTALLING FROM THE GUI

3.3.2.2 INSTALLING FROM THE CONSOLE

3.3.3 UNSTABLE VERSION OF FREECAD

3.4 DEBIAN AND OTHER DEBIAN-BASED SYSTEMS
3.5 OPENSUSE

3.6 GENTOO
3.7 OTHER

3.7.1 MANUAL INSTALL ON .DEB BASED SYSTEMS

3.7.2 INSTALLING ON OTHER LINUX/UNIX SYSTEMS

3.7.3 INSTALLING WINDOWS VERSION ON LINUX

3.8 INSTALL ON MAC
3.8.1 SIMPLE INSTALLATION

3.8.2 UNINSTALLATION

3 INSTALLATION

4.1 WHAT'S NEW
4.2 FOREWORD

4.3 INSTALLING
4.4 EXPLORING FREECAD

4.5 NAVIGATING IN THE 3D SPACE
4.6 FIRST STEPS WITH FREECAD

4.7 WORKING WITH THE PARTDESIGN AND SKETCHER WORKBENCHES
4.8 WORKING WITH THE DRAFT AND ARCH WORKBENCHES

4.9 SCRIPTING

4 DISCOVERING FREECAD

5.1 3D NAVIGATION
5.2 NAVIGATION

5.2.1 CAD NAVIGATION (DEFAULT)

5.2.2 INVENTOR NAVIGATION

5.2.3 BLENDER NAVIGATION

5.2.4 TOUCHPAD NAVIGATION

5.2.5 GESTURE NAVIGATION (V0.16)

5.2.6 MAYA-GESTURE NAVIGATION

5.3 SELECTING OBJECTS
5.3.1 SIMPLE SELECTION

5 WORKING WITH FREECAD

Manual - FreeCAD Documentation

1 von 244

5.3.2 PRESELECTION

5.4 MANIPULATING OBJECTS
5.5 HARDWARE SUPPORT

5.6 MAC OS X ISSUES
5.7 THE FREECAD DOCUMENT

5.8 APPLICATION AND USER INTERFACE
5.9 SCRIPTING

5.10 SETTING USER PREFERENCES
5.11 CUSTOMIZING THE INTERFACE

5.12 OBJECT PROPERTIES

6.1 BUILT-IN WORKBENCHES
6.2 EXTERNAL WORKBENCHES

6.3 THE PARTDESIGN WORKBENCH
6.4 BASIC WORKFLOW

6.5 THE TOOLS
6.5.1 THE SKETCHER TOOLS

6.5.1.1 SKETCHER GEOMETRIES

6.5.1.2 SKETCHER CONSTRAINTS

6.5.1.3 OTHER

6.5.2 THE PART DESIGN TOOLS

6.5.2.1 CONSTRUCTION TOOLS

6.5.2.2 MODIFICATION TOOLS

6.5.2.3 TRANSFORMATION TOOLS

6.5.2.4 EXTRAS

6.6 FEATURE PROPERTIES
6.6.1 PROPERTIES

6.6.2 VIEW

6.6.3 DATA

6.7 TUTORIALS
6.8 THE MESH WORKBENCH

6.9 USING THE MESH MODULE
6.10 LINKS

6.11 THE PART WORKBENCH
6.11.1 THE TOOLS

6.11.2 PRIMITIVES

6.11.3 MODIFYING OBJECTS

6.11.4 OTHER TOOLS

6.11.5 BOOLEAN OPERATIONS

6.11.6 EXPLAINING THE CONCEPTS

6.11.7 SCRIPTING

6.11.8 EXAMPLES

6.11.9 TUTORIALS

6.12 THE DRAWING WORKBENCH
6.13 GUI TOOLS
6.14 SCRIPTING

6.14.1 SIMPLE EXAMPLE

6.14.2 THE PARAMETRIC WAY

6.14.3 ACCESSING THE BITS AND PIECES

6.14.4 GENERAL DIMENSIONING AND TOLERANCING

6.15 TEMPLATES
6.16 EXTENDING THE DRAWING MODULE

6.17 TUTORIALS
6.18 EXTERNAL LINKS

6.19 THE RAYTRACING WORKBENCH
6.20 TOOLS

6.20.1 RAYTRACING PROJECT TOOLS

6.20.2 UTILITIES

6.21 TYPICAL WORKFLOW
6.22 CREATING A POVRAY FILE MANUALLY

6.23 SCRIPTING
6.23.1 OUTPUTTING RENDER FILES

6.23.2 CREATING A CUSTOM RENDER OBJECT

6.24 LINKS
6.24.1 POVRAY

6.24.2 LUXRENDER

6.24.3 FUTURE POSSIBLE RENDERERS TO IMPLEMENT

6.25 TEMPLATES
6.25.1 POVRAY

6 WORKING WITH WORKBENCHES

Manual - FreeCAD Documentation

2 von 244

6.25.2 LUXRENDER

6.26 EXPORTING TO KERKYTHEA
6.27 LINKS

6.28 THE IMAGE WORKBENCH
6.29 THE DRAFT WORKBENCH

6.29.1 DRAWING OBJECTS

6.29.2 MODIFYING OBJECTS

6.29.3 UTILITY TOOLS

6.29.4 FILE FORMATS

6.29.5 ADDITIONAL FEATURES

6.29.6 PREFERENCE SETTINGS

6.29.7 SCRIPTING

6.29.8 TUTORIALS

7.1 MACROS
7.1.1 HOW IT WORKS

7.1.2 EXAMPLE

7.1.3 CUSTOMIZING

7.1.4 CREATING MACROS WITHOUT RECORDING

7.1.5 MACROS REPOSITORY

7.1.6 LINKS

7.1.7 TUTORIALS

7.2 INTRODUCTION TO PYTHON
7.3 THE INTERPRETER

7.4 VARIABLES
7.5 NUMBERS

7.6 LISTS
7.7 INDENTATION

7.8 FUNCTIONS
7.9 MODULES

7.10 STARTING WITH FREECAD
7.11 PYTHON SCRIPTING IN FREECAD

7.11.1 THE INTERPRETER

7.11.2 PYTHON HELP

7.12 BUILT-IN MODULES
7.12.1 THE APP AND GUI OBJECTS

7.12.2 THE DOCUMENT OBJECTS

7.13 USING ADDITIONAL MODULES
7.13.1 CREATING OBJECTS

7.13.2 MODIFYING OBJECTS

7.13.3 QUERYING OBJECTS

7.13.4 INTRODUCTION

7.13.5 CREATION AND LOADING

7.13.6 MODELING

7.13.7 EXAMINING AND TESTING

7.13.8 WRITE YOUR OWN ALGORITHMS

7.13.9 EXPORTING

7.13.10 GUI RELATED STUFF

7.13.11 ODDS AND ENDS

7.13.12 TUTORIAL

7.14 INTRODUCTION
7.14.1 CLASS DIAGRAM

7.14.2 GEOMETRY

7.14.3 TOPOLOGY

7.14.4 QUICK EXAMPLE : CREATING SIMPLE TOPOLOGY

7.14.4.1 CREATING GEOMETRY

7.14.4.2 ARC

7.14.4.3 LINE

7.14.4.4 PUTTING ALL TOGETHER

7.14.4.5 MAKE A PRISM

7.14.4.6 SHOW IT ALL

7.15 CREATING BASIC SHAPES
7.15.1 IMPORTING THE NEEDED MODULES

7.15.2 CREATING A VECTOR

7.15.3 CREATING AN EDGE

7.15.4 PUTTING THE SHAPE ON SCREEN

7.15.5 CREATING A WIRE

7.15.6 CREATING A FACE

7.15.7 CREATING A CIRCLE

7 SCRIPTING AND MACROS

Manual - FreeCAD Documentation

3 von 244

7.15.8 CREATING AN ARC ALONG POINTS

7.15.9 CREATING A POLYGON

7.15.10 CREATING A BEZIER CURVE

7.15.11 CREATING A PLANE

7.15.12 CREATING AN ELLIPSE

7.15.13 CREATING A TORUS

7.15.14 CREATING A BOX OR CUBOID

7.15.15 CREATING A SPHERE

7.15.16 CREATING A CYLINDER

7.15.17 CREATING A CONE

7.16 MODIFYING SHAPES
7.16.1 TRANSFORM OPERATIONS

7.16.1.1 TRANSLATING A SHAPE

7.16.1.2 ROTATING A SHAPE

7.16.1.3 GENERIC TRANSFORMATIONS WITH MATRIXES

7.16.1.4 SCALING A SHAPE

7.16.2 BOOLEAN OPERATIONS

7.16.2.1 SUBTRACTION

7.16.2.2 INTERSECTION

7.16.2.3 UNION

7.16.2.4 SECTION

7.16.2.5 EXTRUSION

7.17 EXPLORING SHAPES
7.17.1 EDGE ANALYSIS

7.17.2 USING THE SELECTION

7.18 COMPLETE EXAMPLE: THE OCC BOTTLE
7.18.1 THE COMPLETE SCRIPT

7.18.2 DETAILED EXPLANATION

7.19 BOX PIERCED
7.20 LOADING AND SAVING

7.21 CONVERTING PART OBJECTS TO MESHES
7.22 CONVERTING MESHES TO PART OBJECTS

7.23 ACCESSING AND MODIFYING THE SCENEGRAPH
7.24 USING CALLBACK MECHANISMS

7.25 DOCUMENTATION
7.26 PYSIDE

7.27 BASIC EXAMPLE
7.28 AVAILABLE PROPERTIES

7.29 PROPERTY TYPE
7.30 OTHER MORE COMPLEX EXAMPLE

7.31 MAKING OBJECTS SELECTABLE
7.32 WORKING WITH SIMPLE SHAPES

7.33 FURTHER INFORMATIONS
7.33.1 USING FREECAD WITHOUT GUI

7.33.2 USING FREECAD WITH GUI

7.33.3 TUTORIAL

7.33.4 A TYPICAL INITGUI.PY FILE

7.33.5 A TYPICAL MODULE FILE

7.33.6 IMPORT A NEW FILETYPE

7.33.7 ADDING A LINE

7.33.8 ADDING A POLYGON

7.33.9 ADDING AND REMOVING AN OBJECT TO A GROUP

7.33.10 ADDING A MESH

7.33.11 ADDING AN ARC OR A CIRCLE

7.33.12 ACCESSING AND CHANGING REPRESENTATION OF AN OBJECT

7.33.13 OBSERVING MOUSE EVENTS IN THE 3D VIEWER VIA PYTHON

7.33.14 DISPLAY KEYS PRESSED AND EVENTS COMMAND

7.33.15 MANIPULATE THE SCENEGRAPH IN PYTHON

7.33.16 ADDING AND REMOVING OBJECTS TO/FROM THE SCENEGRAPH

7.33.17 ADDING CUSTOM WIDGETS TO THE INTERFACE

7.33.18 ADDING A TAB TO THE COMBO VIEW

7.33.19 ENABLE OR DISABLE A WINDOW

7.33.20 OPENING A CUSTOM WEBPAGE

7.33.21 GETTING THE HTML CONTENTS OF AN OPENED WEBPAGE

7.33.22 RETRIEVE AND USE THE COORDINATES OF 3 SELECTED POINTS OR OBJECTS

7.33.23 LIST ALL OBJECTS

7.33.24 LIST THE DIMENSION GIVE THE NAME OF OBJECT

7.33.25 FUNCTION RESIDENT WITH THE MOUSE CLICK ACTION

7.33.26 FINDING-SELECTING ALL ELEMENTS BELOW CURSOR

7.33.27 LIST THE COMPONENTS OF AN OBJECT

Manual - FreeCAD Documentation

4 von 244

7.33.28 LIST THE PROPERTIESLIST

7.33.29 ADDING ONE PROPERTY "COMMENT"

7.33.30 SEARCH AND DATA EXTRACTION

7.33.31 MANUAL SEARCH OF AN ELEMENT WITH LABEL

7.33.32 CARTESIAN COORDINATES

7.33.33 SELECT ALL OBJECTS IN THE DOCUMENT

7.33.34 SELECTING A FACE OF AN OBJECT

7.33.35 CREATE ONE OBJECT TO THE POSITION OF THE CAMERA

7.33.36 FIND NORMAL VECTOR ON THE SURFACE

7.34 THE MAIN SCRIPT
7.35 DETAILED EXPLANATION

7.36 TESTING & USING THE SCRIPT
7.37 REGISTERING THE SCRIPT IN THE FREECAD INTERFACE

7.38 SO YOU WANT MORE?
7.39 DESIGNING THE DIALOG

7.40 CONVERTING OUR DIALOG TO PYTHON
7.41 MAKING OUR DIALOG DO SOMETHING

7.42 THE COMPLETE SCRIPT
7.43 CREATION OF A DIALOG WITH BUTTONS

7.43.1 METHOD 1

7.43.2 METHOD 2

7.44 USE QFILEDIALOG FOR WRITE THE FILE
7.45 USE QFILEDIALOG FOR READ THE FILE

7.46 USE QCOLORDIALOG FOR GET THE COLOR
7.47 SOME USEFUL COMMANDS

8.1 STATEMENT OF THE MAIN DEVELOPER
8.2 LICENCES USED IN FREECAD

8.2.1 IMPACT OF THE LICENCES

8.2.1.1 PRIVATE USERS

8.2.1.2 PROFESSIONAL USERS

8.2.1.3 OPEN SOURCE DEVELOPERS

8.2.1.4 COMMERCIAL DEVELOPERS

8.3 OPENCASCADE LICENSE SIDE EFFECTS (FOR FREECAD VERSION 0.13 AND OLDER)
8.3.1 GPL2/GPL3/OCTLP INCOMPATIBILITY

8.3.2 DEBIAN

8.3.3 FEDORA/REDHAT NON-FREE

8.4 REPORTING BUGS
8.5 REQUESTING FEATURES

8.6 SUBMITTING PATCHES
8.7 REQUESTING MERGE

8.8 PREREQUISITES
8.8.1 REQUIRED PROGRAMS

8.8.2 SOURCE CODE

8.8.2.1 USING GIT (PREFERRED)

8.8.3 COMPILER

8.8.4 THIRD PARTY LIBRARIES

8.8.5 OPTIONAL PROGRAMS

8.8.6 SYSTEM PATH CONFIGURATION

8.9 CONFIGURATION WITH CMAKE
8.9.1 THE SWITCH TO CMAKE

8.9.2 CMAKE

8.9.3 CONFIGURE CMAKE USING GUI

8.9.4 OPTIONS FOR THE BUILD PROCESS

8.10 BUILDING FREECAD
8.10.1 BUILDING WITH VISUAL STUDIO 12 2013

8.10.2 BUILDING WITH VISUAL STUDIO 9 2008

8.10.2.1 AFTER BUILDING

8.10.3 BUILDING WITH QT CREATOR

8.10.3.1 INSTALLATION AND CONFIGURATION OF QT CREATOR

8.10.3.2 IMPORT PROJECT AND BUILD

8.10.4 COMMAND LINE BUILD

8.11 BUILDING OLDER VERSIONS
8.11.1 USING LIBPACK

8.11.1.1 DIRECTORY SETUP IN VISUAL STUDIO

8.11.1.1.1 INCLUDES

8.11.1.1.2 LIBS

8.11.1.1.3 EXECUTABLES

8.11.1.2 PYTHON NEEDED

8 DEVELOPING APPLICATIONS FOR FREECAD

Manual - FreeCAD Documentation

5 von 244

8.11.1.3 SPECIAL FOR VC8

8.11.2 COMPILE

8.11.3 AFTER COMPILING

8.11.4 ADDITIONAL STUFF

8.12 REFERENCES
8.13 GETTING THE SOURCE

8.13.1 GIT

8.13.2 GITHUB

8.13.3 SOURCE PACKAGE

8.14 GETTING THE DEPENDENCIES
8.14.1 DEBIAN AND UBUNTU

8.14.2 FEDORA

8.14.3 GENTOO

8.14.4 OPENSUSE

8.14.5 ARCH LINUX

8.14.6 OLDER AND NON-CONVENTIONAL DISTRIBUTIONS

8.14.6.1 PIVY

8.15 COMPILE FREECAD
8.15.1 USING CMAKE

8.15.1.1 IN-SOURCE BUILDING

8.15.1.2 HOW TO REPAIR YOUR SOURCE CODE DIRECTORY AFTER ACCIDENTALLY RUNNING AN IN-SOURCE BUILD.

8.15.1.3 OUT-OF-SOURCE BUILD

8.15.1.4 CONFIGURATION OPTIONS

8.15.1.5 QT DESIGNER PLUGIN

8.15.1.6 DOXYGEN

8.15.2 MAKING A DEBIAN PACKAGE

8.16 TROUBLESHOOTING
8.16.1 NOTE FOR 64BIT SYSTEMS

8.17 AUTOMATIC BUILD SCRIPTS
8.17.1 UBUNTU

8.17.2 OPENSUSE 12.2

8.17.3 DEBIAN SQUEEZE

8.17.4 FEDORA 22/23/24

8.18 UPDATING THE SOURCE CODE
8.19 PREREQUISITES

8.19.1 XCODE DEVELOPMENT TOOLS

8.19.2 PACKAGE MANAGER

8.19.2.1 HOMEBREW

8.19.2.2 MACPORTS

8.19.3 CMAKE

8.19.3.1 HOMEBREW

8.19.3.2 MACPORTS

8.20 INSTALLING THE DEPENDENCIES
8.20.1 HOMEBREW DEPENDENCIES

8.20.2 MACPORTS DEPENDENCIES

8.21 GETTING THE SOURCE
8.22 BUILDING FREECAD

8.22.1 CMAKE OPTIONS

8.22.2 CMAKE GUI

8.22.3 CMAKE COMMAND LINE

8.22.4 MAKE

8.23 UPDATING
8.24 TROUBLESHOOTING

8.24.1 FORTRAN

8.24.2 OPENGL

8.24.3 OVERVIEW

8.24.4 LINKS

8.24.5 DETAILS

8.24.5.1 PYTHON

8.24.5.1.1 DESCRIPTION

8.24.5.1.2 CREDITS

8.24.5.2 OPENCASCADE

8.24.5.3 QT

8.24.5.4 COIN3D

8.24.5.5 SOQT

8.24.5.6 XERCES-C++

8.24.5.7 ZLIB

8.24.5.8 BOOST

8.24.5.9 LIBAREA

8.24.6 LIBPACK

Manual - FreeCAD Documentation

6 von 244

8.24.6.1 FREECADLIBS7.X CHANGELOG

8.25 TOOL PAGE
8.25.1 PLATFORM INDEPENDEND TOOLS

8.25.1.1 QT-TOOLKIT

8.25.1.2 INKSCAPE

8.25.1.3 DOXYGEN

8.25.1.4 THE GIMP

8.25.2 TOOLS ON WINDOWS

8.25.2.1 VISUAL STUDIO 8 EXPRESS

8.25.2.2 CAMSTUDIO

8.25.2.3 TORTOISE SVN

8.25.2.4 STARUML

8.25.3 TOOLS ON LINUX

8.26 STARTING FREECAD FROM THE COMMAND LINE
8.26.1 COMMAND LINE OPTIONS

8.26.2 RESPONSE AND CONFIG FILES

8.26.3 HIDDEN OPTIONS

8.27 RUNNING FREECAD WITHOUT USER INTERFACE
8.28 RUNNING FREECAD AS A PYTHON MODULE

8.29 THE CONFIG SET
8.29.1 USER RELATED INFORMATION

8.29.2 COMMAND LINE ARGUMENTS

8.29.3 SYSTEM RELATED

8.29.4 BUILD RELATED INFORMATION

8.29.5 BRANDING RELATED

8.30 USAGE
8.30.1 DISTSRC

8.30.2 DISTBIN

8.30.3 DISTSETUP

8.30.4 DISTSETUP

8.30.5 DISTALL

8.30.6 NEXTBUILDNUMBER

8.30.7 CREATEMODULE

8.31 USING THE FREECAD BUILD TOOL
8.32 SETTING UP A NEW MODULE MANUALLY

8.33 CREATING A NEW WORKBENCH
8.34 CREATING FREECAD COMMANDS IN PYTHON

8.35 CREATING FREECAD COMMANDS IN C++
8.36 LINKS

8.37 TEST FIRST
8.38 COMMAND LINE

8.39 GENERATING A BACKTRACE
8.39.1 FOR LINUX

8.39.2 FOR MACOSX

8.40 PYTHON DEBUGGING
8.41 INTRODUCTION

8.41.1 TESTAPP.ALL

8.41.2 BASETESTS

8.41.3 UNITTESTS

8.41.4 DOCUMENT

8.41.5 UNICODETESTS

8.41.6 MESHTESTSAPP

8.41.7 TESTSKETCHERAPP

8.41.8 TESTPARTAPP

8.41.9 TESTPARTDESIGNAPP

8.41.10 WORKBENCH

8.41.11 MENU

8.41.12 MENU.MENUDELETECASES

8.41.13 MENU.MENUCREATECASES

8.41.14 GENERAL

8.41.15 IMAGES

8.41.16 BRANDING XML

8.42 HELPING TO TRANSLATE FREECAD
8.42.1 HOW TO TRANSLATE

8.42.2 TRANSLATING WITH QT-LINGUIST (OLD WAY)

8.43 PREPARING YOUR OWN MODULES/APPLICATIONS FOR TRANSLATION
8.43.1 PREREQUISITES

8.43.2 PROJECT SETUP

8.43.3 SETTING UP PYTHON FILES FOR TRANSLATION

8.44 TRANSLATING THE WIKI

Manual - FreeCAD Documentation

7 von 244

8.44.1 TRANSLATION PLUGIN

8.44.2 OLD TRANSLATION INSTRUCTIONS

8.45 PYSIDE (PREVIOUSLY PYQT4)
8.45.1 INSTALLATION

8.45.1.1 LINUX

8.45.1.2 WINDOWS

8.45.1.3 MACOSX

8.45.2 USAGE

8.45.3 EXAMPLE OF TRANSITION FROM PYQT4 AND PYSIDE

8.45.4 ADDITIONAL DOCUMENTATION

8.46 PIVY
8.46.1 INSTALLATION

8.46.1.1 PREREQUISITES

8.46.1.2 DEBIAN & UBUNTU

8.46.1.3 OTHER LINUX DISTRIBUTIONS

8.46.1.4 MAC OS

8.46.1.5 WINDOWS

8.46.2 USAGE

8.46.3 ADDITONAL DOCUMENTATION

8.47 PYCOLLADA
8.47.1 INSTALLATION

8.47.1.1 LINUX

8.47.1.1.1 FROM THE GIT REPOSITORY

8.47.1.1.2 WITH EASY_INSTALL

8.47.1.2 WINDOWS

8.47.1.3 MAC OS

8.48 IFCOPENSHELL
8.48.1 INSTALLATION

8.48.1.1 LINUX

8.48.1.2 WINDOWS

8.48.2 LINKS

8.49 TEIGHA CONVERTER
8.49.1 INSTALLATION

9.1 DEVELOPEMENT
9.1.1 PROJECT MANAGERS

9.1.2 MAIN DEVELOPERS

9.1.3 OTHER CODERS

9.2 COMPANIES
9.3 FORUM MODERATORS

9.4 COMMUNITY
9.5 DOCUMENTATION WRITERS

9.6 TRANSLATORS
9.7 ADDONS DEVELOPERS

9 CREDITS

Manual
This is the FreeCAD manual. It includes the essential parts out of the FreeCAD
documentation wiki (/wiki/index.php?title=Main_Page). It is made primarily to
be printed as one big document, so, if you are reading this online, you might
prefer to head directly to the Online help (/wiki
/index.php?title=Online_Help_Toc) version, which is easier to browse.

Welcome to the FreeCAD on-line help
This document has been automatically created from the contents of the official

 (/wiki

/index.php?title=File:Crystal_Clear_app_tutorials.png)

Manual - FreeCAD Documentation

8 von 244

< previous: Online Help Toc (/wiki/index.php?title=Online_Help_Toc)
next: About FreeCAD > (/wiki/index.php?title=About_FreeCAD)

FreeCAD wiki documentation, which can be read online at
http://www.freecadweb.org/wiki/index.php?title=Main_Page
(http://www.freecadweb.org/wiki/index.php?title=Main_Page). Since the wiki is
actively maintained and continuously developed by the FreeCAD community of
developers and users, you may find that the online version contains more or
newer information than this document. There you will also find in-progress
translations of this documentation in several languages. But nevertheless, we
hope you will find here all information you need. In case you have questions
you can't find answers for in this document, have a look on the FreeCAD forum
(http://forum.freecadweb.org/index.php), where you can maybe find your
question answered, or someone able to help you.

How to use

This document is divided into several sections: introduction, usage, scripting
and development, the last three address specifically the three broad
categories of users of FreeCAD: end-users, who simply want to use the
program, power-users, who are interested by the scripting capabilities of
FreeCAD and would like to customize some of its aspects, and developers, who
consider FreeCAD as a base for developing their own applications. If you are
completely new to FreeCAD, we suggest you to start simply from the
introduction.

Contribute

As you may have experienced sometimes, programmers are really bad help
writers! For them it is all completely clear because they made it that way.
Therefore it's vital that experienced users help us to write and revise the
documentation. Yes, we mean you! How, you might ask? Just go to the Wiki at
http://www.freecadweb.org/wiki/index.php (http://www.freecadweb.org
/wiki/index.php) in the User section. You will need a FreeCAD wiki account to
log in. Ask on the forum or on the irc channel for wiki write permission (the
wiki is write-protected to avoid spamming) and we will create an account for
you. Currently the wiki account is separate to the forum account but we will
create the wiki account with the same name as your forum account. Then you
can start editing! Also, check out the page at http://www.freecadweb.org
/wiki/index.php?title=Help_FreeCAD (http://www.freecadweb.org
/wiki/index.php?title=Help_FreeCAD) for more ways you can help FreeCAD.

Index
(/wiki/index.php?title=Online_Help_Toc)

Introduction

Manual - FreeCAD Documentation

9 von 244

(/wiki/index.php?title=File:Freecad_default.jpg)
FreeCAD is a general purpose parametric 3D CAD (http://en.wikipedia.org
/wiki/CAD) modeler. The development is completely Open Source
(http://en.wikipedia.org/wiki/Open_source) (LGPL License). FreeCAD is aimed
directly at mechanical engineering (http://en.wikipedia.org
/wiki/Mechanical_engineering) and product design (http://en.wikipedia.org
/wiki/Product_design) but also fits in a wider range of uses around
engineering, such as architecture or other engineering specialties.

FreeCAD features tools similar to Catia (http://en.wikipedia.org/wiki/Catia),
SolidWorks (http://en.wikipedia.org/wiki/Solidworks) or Solid Edge
(http://en.wikipedia.org/wiki/Solid_Edge), and therefore also falls into the
category of MCAD (http://en.wikipedia.org/wiki/CAD), PLM
(http://en.wikipedia.org/wiki/Product_Lifecycle_Management), CAx
(http://en.wikipedia.org/wiki/CAx) and CAE (http://en.wikipedia.org
/wiki/Computer-aided_engineering). It is a feature based parametric modeler
(http://en.wikipedia.org/wiki/Parametric_feature_based_modeler) with a
modular software architecture which makes it easy to provide additional
functionality without modifying the core system.

As with many modern 3D CAD (http://en.wikipedia.org/wiki/CAD) modelers it
has many 2D components in order to sketch 2D shapes or extract design
details from the 3D model to create 2D production drawings, but direct 2D
drawing (like AutoCAD LT (http://en.wikipedia.org/wiki/AutoCAD#AutoCAD_LT))
is not the focus, neither are animation or organic shapes (like Maya
(http://en.wikipedia.org/wiki/Maya_(software)), 3ds Max
(http://en.wikipedia.org/wiki/3ds_Max), Blender (http://en.wikipedia.org
/wiki/Blender_%28software%29) or Cinema 4D (http://en.wikipedia.org
/wiki/CINEMA_4D)), although, thanks to its wide adaptability, FreeCAD might
become useful in a much broader area than its current focus.

FreeCAD makes heavy use of all the great open-source libraries that exist out
there in the field of Scientific Computing (http://en.wikipedia.org
/wiki/Scientific_Computation). Among them are OpenCascade
(http://OpenCascade.org), a powerful CAD kernel, Coin3D
(http://www.Coin3D.org), an incarnation of Open Inventor
(http://en.wikipedia.org/wiki/Open_Inventor), Qt
(http://www.qtsoftware.com/), the world-famous UI framework, and Python
(http://www.python.org), one of the best scripting languages available.
FreeCAD itself can also be used as a library by other programs.

FreeCAD is also fully multi-platform (http://en.wikipedia.org/wiki/Cross-

Manual - FreeCAD Documentation

10 von 244

< previous: Online Help Startpage (/wiki
/index.php?title=Online_Help_Startpage)

next: Feature list > (/wiki/index.php?title=Feature_list)

platform), and currently runs flawlessly on Windows and Linux/Unix and Mac
OSX systems, with the exact same look and functionality on all platforms.

For more information about FreeCAD's capabilities, take a look at the Feature
list (/wiki/index.php?title=Feature_list), the latest release notes (/wiki
/index.php?title=Getting_started#What.27s_new) or the Getting started (/wiki
/index.php?title=Getting_started) articles, or see more screenshots (/wiki
/index.php?title=Screenshots).

About the FreeCAD project

The FreeCAD project was started as far as 2001, as described in its history
(/wiki/index.php?title=History) page.

FreeCAD is maintained and developed by a community of enthusiastic
developers and users (see the contributors (/wiki
/index.php?title=Contributors) page). They work on FreeCAD voluntarily, in
their free time. They cannot guarantee that FreeCAD contains or will contain
everything you might wish, but they will usually do their best! The community
gathers on the FreeCAD forum (http://forum.freecadweb.org), where most of
the ideas and decisions are discussed. Feel free to join us there!

Index (/wiki
/index.php?title=Online_Help_Toc)

This is an extensive, hence not complete, list of features FreeCAD implements.
If you want to look into the future see the Development roadmap (/wiki
/index.php?title=Development_roadmap) for a quick overview of what's
coming next. Also, the Screenshots (/wiki/index.php?title=Screenshots) are a
nice place to go.

Release notes
Release 0.11 (/wiki/index.php?title=Release_notes_011) - March 2011
Release 0.12 (/wiki/index.php?title=Release_notes_012) - December 2011
Release 0.13 (/wiki/index.php?title=Release_notes_013) - January 2013
Release 0.14 (/wiki/index.php?title=Release_notes_014) - March 2014
Release 0.15 (/wiki/index.php?title=Release_notes_015) - March 2015
Release 0.16 (/wiki/index.php?title=Release_notes_016) - April 2016

Key features
A complete Open
CASCADE Technology
(http://en.wikipedia.org

/wiki/Open_CASCADE)-based geometry kernel allowing complex 3D
operations on complex shape types, with native support for concepts like
brep, nurbs curves and surfaces, a wide range of geometric entities,
boolean operations and fillets, and built-in support of STEP and IGES
formats
A full parametric model. All FreeCAD objects are natively parametric, which
means their shape can be based on properties (/wiki

 (/wiki/index.php?title=File:Feature1.jpg)

Manual - FreeCAD Documentation

11 von 244

/index.php?title=Property) or even depend on other objects, all changes
being recalculated on demand, and recorded by the undo/redo stack. New
object types can be added easily, that can even be fully programmed in
Python (/wiki/index.php?title=Scripted_objects)

A modular architecture
that allow plugins
(modules) to add
functionality to the core

application. Those extensions can be as complex as whole new
applications programmed in C++ or as simple as Python scripts (/wiki
/index.php?title=Power_users_hub) or self-recorded macros (/wiki
/index.php?title=Macros). You have complete access from the Python
built-in interpreter, macros or external scripts to almost any part of
FreeCAD, being geometry creation and transformation (/wiki
/index.php?title=Topological_data_scripting), the 2D or 3D representation
of that geometry (scenegraph (/wiki/index.php?title=Scenegraph)) or even
the FreeCAD interface (/wiki/index.php?title=PySide)

Import/export to
standard formats such as
STEP
(http://en.wikipedia.org

/wiki/ISO_10303), IGES (http://en.wikipedia.org/wiki/IGES), OBJ
(http://en.wikipedia.org/wiki/Obj), STL (http://en.wikipedia.org
/wiki/STL_%28file_format%29), DXF (http://en.wikipedia.org/wiki/Dxf),
SVG (http://en.wikipedia.org/wiki/Svg), STL (http://en.wikipedia.org
/wiki/STL_(file_format)), DAE (http://en.wikipedia.org/wiki/COLLADA), IFC
(http://en.wikipedia.org/wiki/Industry_Foundation_Classes) or OFF
(http://people.sc.fsu.edu/~jburkardt/data/off/off.html), NASTRAN
(http://en.wikipedia.org/wiki/NASTRAN), VRML (http://en.wikipedia.org
/wiki/VRML) in addition to FreeCAD's native Fcstd file format (/wiki
/index.php?title=Fcstd_file_format). The level of compatibility between
FreeCAD and a given file format can vary, since it depends on the module
that implements it.

A Sketcher (/wiki

/index.php?title=Sketcher_Workbench) with constraint-solver, allowing to
sketch geometry-constrained 2D shapes. The sketcher currently allows you
to build several types of constrained geometry, and use them as a base to
build other objects throughout FreeCAD.

A Robot simulation (/wiki

/index.php?title=Robot_Workbench) module that allows to study robot
movements. The robot module already has an extended graphical

 (/wiki/index.php?title=File:Feature3.jpg)

 (/wiki/index.php?title=File:Feature4.jpg)

 (/wiki/index.php?title=File:Feature5.jpg)

 (/wiki/index.php?title=File:Feature7.jpg)

 (/wiki/index.php?title=File:Feature9.jpg)

Manual - FreeCAD Documentation

12 von 244

interface allowing GUI-only workflow.
A Drawing sheets (/wiki

/index.php?title=Drawing_Module) module that permit to put 2D views of
your 3D models on a sheet. This modules then produces ready-to-export
SVG or PDF sheets. The module is still sparse but already features a
powerful Python functionality.

A Rendering
(/wiki

/index.php?title=Raytracing_Module) module that can export 3D objects
for rendering with external renderers. Currently only supports povray
(http://en.wikipedia.org/wiki/POV-Ray) and LuxRender
(http://en.wikipedia.org/wiki/LuxRender), but is expected to be extended
to other renderers in the future.

An Architecture
(/wiki

/index.php?title=Arch_Module) module that allows BIM
(http://en.wikipedia.org/wiki/Building_Information_Modeling)-like
workflow, with IFC (http://en.wikipedia.org
/wiki/Industry_Foundation_Classes) compatibility.

Path module (/wiki

/index.php?title=Path_Workbench) dedicated to mechanical machining
like milling (CAM), and is able to output, display and adjust G code
(http://en.wikipedia.org/wiki/G-code).

General features
FreeCAD is multi-platform. It runs and behaves exactly the same way on
Windows Linux and macOS platforms.
FreeCAD is a full GUI application. FreeCAD has a complete Graphical User
Interface based on the famous Qt (http://www.qtsoftware.com/)
framework, with a 3D viewer based on Open Inventor
(http://en.wikipedia.org/wiki/Open_Inventor), allowing fast rendering of
3D scenes and a very accessible scene graph representation.
FreeCAD also runs as a command line application, with low memory
footprint. In command line mode, FreeCAD runs without its interface, but
with all its geometry tools. It can be, for example, used as server to
produce content for other applications.
FreeCAD can be imported as a Python module (/wiki
/index.php?title=Embedding_FreeCAD), inside other applications that can

 (/wiki/index.php?title=File:Feature8.jpg)

 (/wiki/index.php?title=File:Feature-raytracing.jpg)

 (/wiki/index.php?title=File:Feature-arch.jpg)

 (/wiki/index.php?title=File:Feature-CAM.jpg)

Manual - FreeCAD Documentation

13 von 244

run Python scripts, or in a Python console. Like in console mode, the
interface part of FreeCAD is unavailable, but all geometry tools are
accessible.
Workbench concept: In the FreeCAD interface, tools are grouped by
workbenches (/wiki/index.php?title=Workbenches). This allows to display
only the tools used to accomplish a certain task, keeping the workspace
uncluttered and responsive, and the application fast to load.
Plugin/Module framework for late loading of features/data-types. FreeCAD
is divided into a core application and modules, that are loaded only when
needed. Almost all the tools and geometry types are stored in modules.
Modules behave like plugins, and can be added or removed to an existing
installation of FreeCAD.
Parametric associative document objects: All objects in a FreeCAD
document can be defined by parameters. Those parameters can be
modified on the fly, and recomputed anytime. The relationship between
objects is also stored, so modifying one object also modifies its
dependent objects.
Parametric primitive creation (box, sphere, cylinder, etc)
Graphical modification operations like translation, rotation, scaling,
mirroring, offset (trivial or after Jung/Shin/Choi
(https://www.researchgate.net/publication/240754626_Self-
intersection_Removal_in_Triangular_Mesh_Offsetting)) or shape
conversion, in any plane of the 3D space
Boolean operations (http://en.wikipedia.org
/wiki/Constructive_solid_geometry) (union, difference, intersect)
Graphical creation of simple planar geometry like lines, wires, rectangles,
arcs or circles in any plane of the 3D space
Modeling with straight or revolution extrusions, sections and fillets.
Topological components like vertices, edges, wires and planes (via Python
scripting).
Testing and repairing tools for meshes: solid test, non-two-manifolds test,
self-intersection test, hole filling and uniform orientation.
Annotations like texts or dimensions
Undo/Redo framework: Everything is undo/redoable, with access to the
undo stack, so multiple steps can be undone at a time.
Transaction management: The undo/redo stack stores document
transactions and not single actions, allowing each tool to define exactly
what must be undone or redone.
Built-in scripting (/wiki/index.php?title=Scripting) framework: FreeCAD
features a built-in Python (http://www.python.org/) interpreter, and an
API that covers almost any part of the application, the interface, the
geometry and the representation of this geometry in the 3D viewer. The
interpreter can run single commands up to complex scripts, in fact entire
modules can even be programmed completely in Python.

Manual - FreeCAD Documentation

14 von 244

< previous: About FreeCAD (/wiki/index.php?title=About_FreeCAD)
next: Install on Windows > (/wiki
/index.php?title=Install_on_Windows)

Built-in Python console with syntax highlighting, autocomplete and class
browser: Python commands can be issued directly in FreeCAD and
immediately return results, permitting scriptwriters to test functionality
on the fly, explore the contents of the modules and easily learn about
FreeCAD internals.
User interaction mirroring on the console: Everything the user does in the
FreeCAD interface executes Python code, which can be printed on the
console and recorded in macros.
Full macro recording & editing: The Python commands issued when the
user manipulates the interface can then be recorded, edited if needed,
and saved to be reproduced later.
Compound (ZIP based) document save format: FreeCAD documents saved
with .fcstd (/wiki/index.php?title=Fcstd_file_format) extension can contain
many different types of information, such as geometry, scripts or
thumbnail icons. The .fcstd file is itself a zip container, so a saved FreeCAD
file has already been compressed.
Fully customizable/scriptable Graphical User Interface. The Qt
(http://www.qtsoftware.com)-based interface of FreeCAD is entirely
accessible via the Python interpreter. Aside from the simple functions that
FreeCAD itself provides to workbenches, the whole Qt framework is
accessible too, allowing any operation on the GUI, such as creating,
adding, docking, modifying or removing widgets and toolbars.
Thumbnailer (Linux systems only at the moment): The FreeCAD document
icons show the contents of the file in most file manager applications such
as Gnome's Nautilus.
A modular MSI installer allows flexible installations on Windows systems.
Packages for Ubuntu systems are also maintained.

In development
An Assembly
(/wiki

/index.php?title=Assembly_project) module that allows to work with
multiple projects, multiple shapes, multiple documents, multiple files,
multiple relationships... This module is currently in planning state.

Extra Workbenches
Power users have created various custom external workbenches (/wiki
/index.php?title=External_workbenches).

Index (/wiki/index.php?title=Online_Help_Toc)

 (/wiki/index.php?title=File:Feature-assembly.jpg)

Manual - FreeCAD Documentation

15 von 244

Installation
Install on Windows
The easiest way to install FreeCAD on Windows is to download the installer
below.

 (/wiki/index.php?title=File:Windows.png) Windows (https://github.com
/FreeCAD/FreeCAD/releases/download/0.16/FreeCAD.0.16.6706.f86a4e4-
WIN-x86-installer.exe) 32 bits (/wiki/index.php?title=File:Windows.png)
Windows (https://github.com/FreeCAD/FreeCAD/releases/download
/0.16/FreeCAD-0.16.6706.f86a4e4-WIN-x64_Installer-1.exe) 64 bits

After downloading the .msi (Microsoft Installer) file, just double-click on it to
start the installation process.

Below is more information about technical options. If it looks daunting, don't
worry! Most Windows users will not need anything more than the .msi to install
FreeCAD and Get started (/wiki/index.php?title=Getting_started)!

Simple Microsoft Installer Installation

The easiest way to install FreeCAD on Windows is by using the installer above.
This page describes the usage and the features of the Microsoft Installer for
more installation options.

If you would like to download either a 64 bit or unstable development version,
see the Download (/wiki/index.php?title=Download) page.

Command Line Installation

With the msiexec.exe command line utility, additional features are available,
like non-interactive installation and administrative installation.
Non-interactive Installation

With the command line

 msiexec /i FreeCAD<version>.msi

installation can be initiated programmatically. Additional parameters can be
passed at the end of this command line, like

msiexec /i FreeCAD-2.5.msi TARGETDIR=r:\FreeCAD25

Limited user interface

The amount of user interface that installer displays can be controlled with /q
options, in particular:

/qn - No interface
/qb - Basic interface - just a small progress dialog
/qb! - Like /qb, but hide the Cancel button
/qr - Reduced interface - display all dialogs that don't require user
interaction (skip all modal dialogs)
/qn+ - Like /qn, but display "Completed" dialog at the end

Manual - FreeCAD Documentation

16 von 244

/qb+ - Like /qb, but display "Completed" dialog at the end
Target directory

The property TARGETDIR determines the root directory of the FreeCAD
installation. For example, a different installation drive can be specified with

TARGETDIR=R:\FreeCAD25

The default TARGETDIR is [WindowsVolume\Programm Files\]FreeCAD<version>.
Installation for All Users

Adding

ALLUSERS=1

causes an installation for all users. By default, the non-interactive installation
install the package just for the current user, and the interactive installation
offers a dialog which defaults to "all users" if the user is sufficiently privileged.
Feature Selection

A number of properties allow selection of features to be installed, reinstalled,
or removed. The set of features for the FreeCAD installer is

DefaultFeature - install the software proper, plus the core libraries
Documentation - install documentation
Source code - install the sources
... ToDo

In addition, ALL specifies all features. All features depend on DefaultFeature,
so installing any feature automatically installs the default feature as well. The
following properties control features to be installed or removed

ADDLOCAL - list of feature to be installed on the local machine
REMOVE - list of features to be removed
ADDDEFAULT - list of features added in their default configuration (which is
local for all FreeCAD features)
REINSTALL - list of features to be reinstalled/repaired
ADVERTISE - list of feature for which to perform an advertise installation

There are a few additional properties available; see the MSDN documentation
for details.

With these options, adding

ADDLOCAL=Extensions

installs the interpreter itself and registers the extensions, but does not install
anything else.

Uninstallation

With

msiexec /x FreeCAD<version>.msi

FreeCAD can be uninstalled. It is not necessary to have the MSI file available
for uninstallation; alternatively, the package or product code can also be
specified. You can find the product code by looking at the properties of the
Uninstall shortcut that FreeCAD installs in the start menu.

Manual - FreeCAD Documentation

17 von 244

Administrative installation

With

msiexec /a FreeCAD<version>.msi

an "administrative" (network) installation can be initiated. The files get
unpacked into the target directory (which should be a network directory), but
no other modification is made to the local system. In addition, another
(smaller) msi file is generated in the target directory, which clients can then
use to perform a local installation (future versions may also offer to keep
some features on the network drive altogether).

Currently, there is no user interface for administrative installations, so the
target directory must be passed on the command line.

There is no specific uninstall procedure for an administrative install - just
delete the target directory if no client uses it anymore.

Advertisement

With

msiexec /jm FreeCAD<version>.msi

it would be possible, in principle, to "advertise" FreeCAD to a machine (with /ju
to a user). This would cause the icons to appear in the start menu, and the
extensions to become registered, without the software actually being installed.
The first usage of a feature would cause that feature to be installed.

The FreeCAD installer currently supports just advertisement of start menu
entries, but no advertisement of shortcuts.

Automatic Installation on a Group of Machines

With Windows Group Policy, it is possible to automatically install FreeCAD an a
group of machines. To do so, perform the following steps:

Log on to the domain controller�.
Copy the MSI file into a folder that is shared with access granted
to all target machines.

�.

Open the MMC snapin "Active Directory users and computers"�.
Navigate to the group of computers that need FreeCAD�.
Open Properties�.
Open Group Policies�.
Add a new policy, and edit it�.
In Computer Configuration/Software Installation, choose
New/Package

�.

Select the MSI file through the network path�.
Optionally, select that you want the FreeCAD to be deinstalled if
the computer leaves the scope of the policy.

��.

Group policy propagation typically takes some time - to reliably deploy the
package, all machines should be rebooted.

Manual - FreeCAD Documentation

18 von 244

< previous: Feature list (/wiki/index.php?title=Feature_list)
next: Install on Unix > (/wiki/index.php?title=Install_on_Unix)

Installation on Linux using Crossover Office

You can install the windows version of FreeCAD on a Linux system using
CXOffice 5.0.1. Run msiexec from the CXOffice command line, assuming that the
install package is placed in the "software" directory which is mapped to the
drive letter "Y:":

msiexec /i Y:\\software\\FreeCAD<version>.msi

FreeCAD is running, but it has been reported that the OpenGL display does not
work, like with other programs running under Wine (http://en.wikipedia.org
/wiki/Wine_(software)) i.e. Google SketchUp (http://en.wikipedia.org
/wiki/SketchUp).

Index
(/wiki

/index.php?title=Online_Help_Toc)

Install on Unix/Linux
The installation of FreeCAD on the most well-known linux systems has been
now endorsed by the community, and FreeCAD should be directly available via
the package manager available on your distribution. The FreeCAD team also
provides a couple of "official" packages when new releases are made, and a
couple of experimental PPA repositories for testing bleeding-edge features.

Once you've got FreeCAD installed, it's time to get started (/wiki
/index.php?title=Getting_started)!

Ubuntu and Ubuntu-based systems
Many Linux distributions are based on Ubuntu and share its repositories.
Besides official variants (Kubuntu, Lubuntu and Xubuntu), there are non official
distros such as Linux Mint, Voyager and others. The installation options below
should be compatible to these systems.

Official Ubuntu repository

FreeCAD is available from Ubuntu repositories and can be installed via the
Software Center or with this command in a terminal:

sudo apt-get install freecad

But chances are this version will be outdated, and not have the latest features.

Latest Stable Release from the "stable releases" PPA or "daily" PPA

The FreeCAD community provides a PPA repository on Launchpad
(https://launchpad.net/~freecad-maintainers/+archive/freecad-stable) with
the latest "stable" FreeCAD version. There is also a more up to date "daily" PPA
repository on Launchpad (https://launchpad.net/~freecad-maintainers
/+archive/freecad-daily) automatically compiled daily from the official
FreeCAD repository master branch, which will usually contain numerous bug
fixes and feature updates.
Installing from the GUI

Add to your system's Software Sources the following PPA (read What are PPAs
and how do I use them? (http://askubuntu.com/questions/4983/what-
are-ppas-and-how-do-i-use-them/5102#5102%29) if you don't know how):

Manual - FreeCAD Documentation

19 von 244

For the "stable" PPA

ppa:freecad-maintainers/freecad-stable

Or for the "daily" PPA

ppa:freecad-maintainers/freecad-daily

When a dialog window asks you to refresh your software sources, click OK.

Now you can install FreeCAD and FreeCAD documentation through the Ubuntu
Software Center, or your package manager of choice.
Installing from the console

Type (or copy-paste) these commands in a console to add the PPA and install
FreeCAD along with the documentation:

For the "stable" PPA

sudo add-apt-repository ppa:freecad-maintainers/freecad-stable

Or for the "daily" PPA

sudo add-apt-repository ppa:freecad-maintainers/freecad-daily

Then:

sudo apt-get update

sudo apt-get upgrade

sudo apt-get install freecad freecad-doc

Unstable version of FreeCAD

If you want to be on the bleeding edge of FreeCAD development, then use the
"daily" PPA repository which provides daily builds (http://www.freecadweb.org
/wiki/index.php?title=Download#Ubuntu_PPA_packages).

Debian and other debian-based systems
Since Debian Lenny, FreeCAD is available directly from the Debian software
repositories and can be installed via synaptic or simply with:

sudo apt-get install freecad

OpenSUSE
FreeCAD is typically installed with:

zypper install FreeCAD

Gentoo
FreeCAD can be built/installed simply by issuing:

emerge freecad

Other
If you find out that your system features FreeCAD but is not documented in this

Manual - FreeCAD Documentation

20 von 244

< previous: Install on Windows (/wiki
/index.php?title=Install_on_Windows)

next: Install on Mac > (/wiki/index.php?title=Install_on_Mac)

page, please tell us on the forum (http://forum.freecadweb.org
/viewforum.php?f=21)!

Many alternative, non-official FreeCAD packages are available on the net, for
example for systems like slackware or fedora. A search on the net can quickly
give you some results.

Manual install on .deb based systems

If for some reason you cannot use one of the above methods, you can always
download one of the .deb packages available on the Download (/wiki
/index.php?title=Download) page.

 (/wiki/index.php?title=File:Linux.png) Ubuntu (https://launchpad.net
/~freecad-maintainers/+archive/freecad-stable) 32/64bit

Once you downloaded the .deb corresponding to your system version, if you
have the Gdebi (http://en.wikipedia.org/wiki/Debian#GDEBI) package installed
(usually it is), you just need to navigate to where you downloaded the file, and
double-click on it. The necessary dependencies will be taken care of
automatically by your system package manager. Alternatively you can also
install it from the terminal, navigating to where you downloaded the file, and
type:

sudo dpkg -i Name_of_your_FreeCAD_package.deb

changing Name_of_your_FreeCAD_package.deb by the name of the file you
downloaded.

After you installed FreeCAD, a startup icon will be added in the "Graphic"
section of your Start Menu.

Installing on other Linux/Unix systems

Unfortnately, at the moment, no precompiled package is available for other
Linux/Unix systems,so you will need to compile FreeCAD yourself (/wiki
/index.php?title=CompileOnUnix).

Installing Windows Version on Linux

See the Install on Windows (/wiki/index.php?title=Install_on_Windows) page.

Index
(/wiki/index.php?title=Online_Help_Toc)

Install on Mac
FreeCAD can be installed on Mac OS X in one step using the Installer.

 (/wiki/index.php?title=File:Mac.png) Mac OS X (https://github.com
/FreeCAD/FreeCAD/releases/download/0.16/FreeCAD_0.16-6706.f86a4e4-
OSX-x86_64.dmg) 10.9 Mavericks 64-bit

New Mac download link

This page describes the usage and features of the FreeCAD installer. It also
includes uninstallation instructions. Once installed, you can get started (/wiki
/index.php?title=Getting_started)!

Manual - FreeCAD Documentation

21 von 244

Simple Installation

The FreeCAD installer is provided as a Installer package (.mpkg) enclosed in a
disk image file.

You can download the latest installer from the Download (/wiki
/index.php?title=Download) page. After downloading the file, just mount the
disk image, then run the Install FreeCAD package.

(/wiki/index.php?title=File:Mac_installer_1.png)

The installer will present you with a Customize Installation screen that lists the
packages that will be installed. If you know that you already have any of these
packages, you can deselect them using the checkboxes. If you're not sure, just
leave all items checked.

(/wiki/index.php?title=File:Mac_installer_2.png)

Manual - FreeCAD Documentation

22 von 244

< previous: Install on Unix (/wiki/index.php?title=Install_on_Unix)
next: Getting started > (/wiki/index.php?title=Getting_started)

Uninstallation

There currently isn't an uninstaller for FreeCAD. To completely remove FreeCAD
and all installed components, drag the following files and folders to the Trash:

In /Applications:
FreeCAD

in /Library/Frameworks/
SoQt.framework
Inventor.framework

Then, from the terminal, run:

sudo /Developer/Tools/uninstall-qt.py

sudo rm -R /usr/local/lib/OCC

sudo rm -R /usr/local/include/OCC

That's it. Eventually, FreeCAD will be available as a self-contained application
bundle so all this hassle will go away.

Index
(/wiki/index.php?title=Online_Help_Toc)

Discovering FreeCAD
What's new

Version 0.11 Release notes (/wiki/index.php?title=Release_notes_011) :
Check what's new in the 0.11 release of FreeCAD
Version 0.12 Release notes (/wiki/index.php?title=Release_notes_012) :
Check what's new in the 0.12 release of FreeCAD
Version 0.13 Release notes (/wiki/index.php?title=Release_notes_013) :
Check what's new in the 0.13 release of FreeCAD
Version 0.14 Release notes (/wiki/index.php?title=Release_notes_014) :
Check what's new in the 0.14 release of FreeCAD
Version 0.15 Release notes (/wiki/index.php?title=Release_notes_015) :
Check what's new in the 0.15 release of FreeCAD
Version 0.16 Release notes (/wiki/index.php?title=Release_notes_016) :
Check what's new in the 0.16 release of FreeCAD

Foreword
FreeCAD is a 3D CAD/CAE parametric modeling application (/wiki
/index.php?title=About_FreeCAD). It is primarily made for mechanical design,
but also serves all other uses where you need to model 3D objects with
precision and control over modeling history.

FreeCAD is still in the early stages of development, so, although it already
offers you a large (and growing) list of features (/wiki
/index.php?title=Feature_list), much is still missing, specially comparing it to
commercial solutions, and you might not find it developed enough yet for use
in production environment. Still, there is a fast-growing community
(http://forum.freecadweb.org/index.php) of enthusiastic users, and you can

Manual - FreeCAD Documentation

23 von 244

already find many examples (http://forum.freecadweb.org/viewtopic.php?f=8&
t=1222) of quality projects developed with FreeCAD.

Like all open-source projects, the FreeCAD project is not a one-way work
delivered to you by its developers. It depends much on its community to grow,
gain features, and stabilize (get bugs fixed). So don't forget this when starting
to use FreeCAD, if you like it, you can directly influence and help (/wiki
/index.php?title=Help_FreeCAD) the project!

Installing
First of all (if not done already) download and install FreeCAD. See the
Download (/wiki/index.php?title=Download) page for information about
current versions and updates, and the Installing (/wiki
/index.php?title=Installing) page for information about how to install FreeCAD.
There are install packages ready for Windows (.msi), Ubuntu & Debian (.deb)
openSUSE (.rpm) and Mac OSX. As FreeCAD is open-source, if you are
adventurous, but want to have a look at the brand-new features being
developed right now, you can also grab the source code and compile (/wiki
/index.php?title=Compiling) FreeCAD yourself.

Exploring FreeCAD

(/wiki/index.php?title=File:Freecad-interface.jpg)

The 3D view, showing the contents of your document�.
The tree view, which shows the hierarchy and construction
history of all the objects in your document

�.

The properties editor (/wiki/index.php?title=Property), which
allows you to view and modify properties of the selected
object(s)

�.

The report view (or output window), which is where FreeCAD
prints messages, warnings and errors

�.

The python console, where all the commands executed by�.

Manual - FreeCAD Documentation

24 von 244

FreeCAD are printed, and where you can enter python code
The workbench selector (/wiki/index.php?title=Workbenches),
where you select the active workbench

�.

The main concept behind the FreeCAD interface is that it is separated into
workbenches (/wiki/index.php?title=Workbenches). A workbench is a collection
of tools suited for a specific task, such as working with meshes (/wiki
/index.php?title=Mesh_Module), or drawing 2D objects (/wiki
/index.php?title=Draft_Module), or constrained sketches (/wiki
/index.php?title=Sketcher_Module). You can switch the current workbench with
the workbench selector (6). You can customize (/wiki
/index.php?title=Interface_Customization) the tools included in each
workbench, add tools from other workbenches or even self-created tools, that
we call macros (/wiki/index.php?title=Macros). There is also a generic
workbench which gathers the most commonly used tools from other
workbenches, called the complete workbench.

When you start FreeCAD for the first time, you are presented with the start
center:

(/wiki/index.php?title=File:Startcenter.jpg)

The Start Center allows you to quickly jump to one of the most common
workbenches, open one of the recent files, or see the latest news from the
FreeCAD world. You can change the default workbench in the preferences
(/wiki/index.php?title=Preferences_Editor).

Navigating in the 3D space
FreeCAD has several different navigation modes (/wiki
/index.php?title=Mouse_Model) available, that change the way you use your
mouse to interact with the objects in the 3D view and the view itself. One of
them is specifically made for touchpads (/wiki
/index.php?title=Mouse_Model#Touchpad_Navigation), where the middle
mouse button is not used. The following table describes the default mode,
called CAD Navigation (You can quickly change the current navigation mode by
right-clicking on an empty area of the 3D view):

Manual - FreeCAD Documentation

25 von 244

Select Pan

 (/wiki
/index.php?title=File:Hand_cursor.png)

 (/wiki/index.php?title=File:Pan_cursor.png

 (/wiki

/index.php?title=File:Select-
mouse.svg)

 (/wiki/index.php?title=File:Pan-

mouse.svg)

Press the left mouse button over an
object you want to select. Holding
down ctrl allows the selection of
multiple objects.

Click the middle mouse button and move the
object around to pan

 (/wiki

/index.php?title=File:Mouse_2_button_right.svg

Press and hold Ctrl key and click and release
right mouse button to pan (rev 0.14)

You also have several view presets (top view, front view, etc) available in the
View menu and on the View toolbar, and by numeric shortcuts (1 , 2 , etc...),
and by right-clicking on an object or on an empty area of the 3D view, you have
quick access to some common operations, such as setting a particular view, or
locating an object in the Tree view.

First steps with FreeCAD
FreeCAD's focus is to allow you to make high-precision 3D models, to keep tight
control over those models (being able to go back into modelling history and

Manual - FreeCAD Documentation

26 von 244

change parameters), and eventually to build those models (via 3D printing, CNC
machining or even construction worksite). It is therefore very different from
some other 3D applications made for other purposes, such as animation film
or gaming. Its learning curve can be steep, specially if this is your first contact
with 3D modeling. If you are struck at some point, don't forget that the friendly
community of users on the FreeCAD forum (http://forum.freecadweb.org
/index.php) might be able to get you out in no time.

The workbench you will start using in FreeCAD depends on the type of job you
need to do: If you are going to work on mechanical models, or more generally
any small-scale objects, you'll probably want to try the PartDesign Workbench
(/wiki/index.php?title=PartDesign_Workbench). If you will work in 2D, then
switch to the Draft Workbench (/wiki/index.php?title=Draft_Workbench), or the
Sketcher Workbench (/wiki/index.php?title=Sketcher_Workbench) if you need
constraints. If you want to do BIM, launch the Arch Workbench (/wiki
/index.php?title=Arch_Workbench). If you are working with ship design, there is
a special Ship Workbench (/wiki/index.php?title=Ship_Workbench) for you. And
if you come from the OpenSCAD world, try the OpenSCAD Workbench (/wiki
/index.php?title=OpenSCAD_Workbench).

You can switch workbenches at any time, and also customize (/wiki
/index.php?title=Interface_Customization) your favorite workbench to add
tools from other workbenches.

Working with the PartDesign and Sketcher workbenches
The PartDesign Workbench (/wiki/index.php?title=PartDesign_Workbench) is
specially made to build complex objects, starting from simple shapes, and
adding or removing pieces (that we call "features"), until you get to your final
object. All the features you applied during the modelling process are stored in
a separate view called the tree view (/wiki
/index.php?title=Document_structure), which also contains the other objects
in your document. You can think of a PartDesign object as a succession of
operations, each one applied to the result of the preceding one, forming one
big chain. In the tree view, you see your final object, but you can expand it and
retrieve all preceding states, and change any of their parameter, which
automatically updates the final object.

The PartDesign workbench makes heavy use of another workbench, the
Sketcher Workbench (/wiki/index.php?title=Sketcher_Workbench). The
sketcher allows you to draw 2D shapes, which are defined by applying
Constraints to the 2D shape. For example, you might draw a rectangle and set
the size of a side by applying a length constraint to one of the sides. That side
then cannot be resized anymore (unless the constraint is changed).

Those 2D shapes made with the sketcher are used a lot in the PartDesign
workbench, for example to create 3D volumes, or to draw areas on the faces of
your object that will then be hollowed from its main volume. This is a typical
PartDesign workflow:

Create a new sketch�.
Draw a closed shape (make sure all points are joined)�.
Close the sketch�.
Expand the sketch into a 3D solid by using the pad tool�.
Select one face of the solid�.
Create a second sketch (this time it will be drawn on the�.

Manual - FreeCAD Documentation

27 von 244

selected face)
Draw a closed shape�.
Close the sketch�.
Create a pocket from the second sketch, on the first object�.

Which gives you an object like this:

(/wiki/index.php?title=File:Partdesign_example.jpg)
At any moment, you can select the original sketches and modify them, or
change the extrusion parameters of the pad or pocket operations, which will
update the final object.

Working with the Draft and Arch workbenches
The Draft Workbench (/wiki/index.php?title=Draft_Workbench) and Arch
Workbench (/wiki/index.php?title=Arch_Module) behave a bit differently than
the other workbenches above, although they follow the same rules, which are
common to all of FreeCAD. In short, while the Sketcher and PartDesign are
made primarily to design single pieces, Draft and Arch are made to ease your
work when working with several, simpler objects.

The Draft Workbench (/wiki/index.php?title=Draft_Workbench) offers you 2D
tools a bit similar to what you can find in traditional 2D CAD applications such
as AutoCAD (https://en.wikipedia.org/wiki/AutoCAD). However, 2D drafting
being far away from the scope of FreeCAD, don't expect to find there the full
array of tools that these dedicated applications offer. Most of the Draft tools
work not only in a 2D plane but also in the full 3D space, and benefit from
special helper systems such as Work planes (/wiki
/index.php?title=Draft_SelectPlane) and object snapping (/wiki
/index.php?title=Draft_Snap).

The Arch Workbench (/wiki/index.php?title=Arch_Module) adds BIM
(http://en.wikipedia.org/wiki/Building_Information_Modeling) tools to
FreeCAD, allowing you to build architectural models with parametric objects.
The Arch workbench relies much on other modules such as Draft and Sketcher.
All the Draft tools are also present in the Arch workbench, and most Arch tools
make use of the Draft helper systems.

A typical workflow with Arch and Draft workbenches might be:

Draw a couple of lines with the Draft Line tool�.

Manual - FreeCAD Documentation

28 von 244

< previous: Install on Mac (/wiki/index.php?title=Install_on_Mac)
next: Mouse Model > (/wiki/index.php?title=Mouse_Model)

Select each line and press the Wall tool to build a wall on each
of them

�.

Join the walls by selecting them and pressing the Arch Add tool�.
Create a floor object, and move your walls in it from the Tree
view

�.

Create a building object, and move your floor in it from the Tree
view

�.

Create a window by clicking the Window tool, select a preset in
its panel, then click on a face of a wall

�.

Add dimensions by first setting the working plane if necessary,
then using the Draft Dimension tool

�.

Which will give you this:

(/wiki/index.php?title=File:Arch_workflow_example.jpg)

More on the Tutorials (/wiki/index.php?title=Tutorials) page.

Scripting
And finally, one of the most powerful features of FreeCAD is the scripting (/wiki
/index.php?title=Scripting) environment. From the integrated python console
(or from any other external Python script), you can gain access to almost any
part of FreeCAD, create or modify geometry, modify the representation of
those objects in the 3D scene or access and modify the FreeCAD interface.
Python scripting can also be used in macros (/wiki/index.php?title=Macros),
which provide an easy method to create custom commands.

Index
(/wiki/index.php?title=Online_Help_Toc)

Working with FreeCAD

Manual - FreeCAD Documentation

29 von 244

3D navigation
The FreeCAD mouse model consists of the commands used to visually navigate
the 3D space and interact with the objects displayed. FreeCAD supports
multiple mouse model navigation styles. The default navigation style is
referred to as "CAD Navigation," and is very simple and practical, but FreeCAD
also provides alternative navigation styles, that you can choose according to
your preferences.

Navigation
The object handling is common to all workbenches. The following mouse
gestures can be used to control the object position and view according to
which Navigation style is selected.

There are two ways to change the navigation style:

In the Preferences Editor (/wiki/index.php?title=Preferences_Editor),
Display section, 3D View tab;
By right-clicking in empty space in the 3D view area, then selecting
Navigation style in the contextual menu.

CAD Navigation (default)

This is the default navigation style and allows the user a simple control of the
view, and does not require the use of keyboard keys except to make multi-
selections.

Select Pan

 (/wiki
/index.php?title=File:Hand_cursor.png)

 (/wiki/index.php?title=File:Pan_cursor.png

 (/wiki

/index.php?title=File:Select-
mouse.svg)

 (/wiki/index.php?title=File:Pan-

mouse.svg)

Manual - FreeCAD Documentation

30 von 244

Press the left mouse button over an
object you want to select. Holding
down ctrl allows the selection of
multiple objects.

Click the middle mouse button and move the
object around to pan

 (/wiki

/index.php?title=File:Mouse_2_button_right.svg

Press and hold Ctrl key and click and release
right mouse button to pan (rev 0.14)

Inventor Navigation

In Inventor Navigation, modeled after Open Inventor (http://en.wikipedia.org
/wiki/Open_Inventor) (not to be confused with Autodesk Inventor), there is no
mouse-only selection. In order to select objects, you must hold down the
CTRL key.

Select Pan

 (/wiki
/index.php?title=File:Hand_cursor.png)

 (/wiki
/index.php?title=File:Pan_cursor.png)

ctrl + (/wiki

/index.php?title=File:Select-
mouse.svg)

 (/wiki

/index.php?title=File:Pan-mouse.svg)

Manual - FreeCAD Documentation

31 von 244

Hold ctrl and press the left mouse
button over an object you want to
select.

Click the left mouse button and
move the object around.

Blender Navigation

In Blender Navigation, modeled after Blender (http://www.blender.org), there
is no mouse-only panning. In order to pan the view, you must hold down the
SHIFT key.

Select Pan

 (/wiki
/index.php?title=File:Hand_cursor.png)

 (/wiki
/index.php?title=File:Pan_cursor.png)

 (/wiki

/index.php?title=File:Select-
mouse.svg)

shift + (/wiki

/index.php?title=File:Pan-mouse.svg)

Press the left mouse button over an
object you want to select.

Hold shift and click the middle
mouse button and move the object
around.

Touchpad Navigation

In Touchpad Navigation, neither panning, nor zooming, nor rotating the view,
are mouse-only (or touchpad-only) operations.

Select Pan

 (/wiki
/index.php?title=File:Hand_cursor.png)

 (/wiki
/index.php?title=File:Pan_cursor.png)

 (/wiki

/index.php?title=File:Select-
touchpad.png)

shift + (/wiki

/index.php?title=File:Touchpad.png)

Press the left mouse button over an
object you want to select.

Hold shift and move the object
around.

Manual - FreeCAD Documentation

32 von 244

Gesture Navigation (v0.16)

This navigation style was tailored for usability with touchscreen and pen, but is
very usable with mouse too.

Select Pan

 (/wiki
/index.php?title=File:Hand_cursor.png)

 (/wiki
/index.php?title=File:Pan_cursor.png)

 (/wiki

/index.php?title=File:Select-
mouse.svg)

 (/wiki

/index.php?title=File:Pan-mouse-
Ctrl.svg)

Press the left mouse button over an
object you want to select. Holding
down Ctrl allows the selection of
multiple objects.

Hold right mouse button and drag to
pan the view.

Manual - FreeCAD Documentation

33 von 244

 (/wiki

/index.php?title=File:Touch_Tap.svg)

 (/wiki

/index.php?title=File:Touch_Tap-
Hold-Drag.svg)

or

 (/wiki

/index.php?title=File:Touch_Two-Finger-
Drag.svg)

Tap to select. Drag with two fingers to pan the
view. Alternatively, tap and hold,
then drag (simulates pan with right
mouse button).

Notes on Gesture Navigation style:

on Windows, the actions of two-finger gestures are separated. The action
depends on how one starts the gesture. For example, if one starts
two-finger pan, the gesture will only pan. Changing the distance between
fingers afterwards will not affect the scaling.

Maya-Gesture Navigation

In Maya-Gesture Navigation, all view movements are archived pressing ALT
and a mouse button, so that it will be needed to have a 3 button mouse in
order to correctly use this navigation mode. Alternately it's possible to use
gestures as this mode was been developed over the normal Gesture Navigation
mode.

Select Pan

 (/wiki
/index.php?title=File:Hand_cursor.png)

 (/wiki
/index.php?title=File:Pan_cursor.png)

 (/wiki

/index.php?title=File:Select-
mouse.svg)

alt + (/wiki

/index.php?title=File:Pan-mouse.svg)

Manual - FreeCAD Documentation

34 von 244

Press the left mouse button over an
object you want to select.

Hold alt, hold the middle mouse
button and drag to pan the view.

Selecting objects

Simple selection

Objects can be selected by a click with the left mouse button either by clicking
on the object in the 3D-view or by selecting it in the tree view.

Preselection

There is also a Preselection mechanism that highlights objects and displays
information before selection by just hovering the mouse over the objects. If
you don't like this behaviour or you have a slow machine, you can switch
preselection off in the preferences.

Manipulating Objects
FreeCAD offers manipulators (/wiki/index.php?title=Manipulator) that are
handles that can be used to modify an object's appearance, shape, or other
parameters.

.

Obsolete
The clipping plane (/wiki/index.php?title=Std_ClippingPlane) is a good
example of an object with manipulators. A clipping plane (/wiki
/index.php?title=Std_ClippingPlane) can be activated with the View→Clipping
Plane menu. After activation the clipping plane object appears and shows
seven obvious manipulators as little boxes: One on each end of its three
coordinate axes and one on the center of the plane normal axis. There are four
more that are not as obvious: The plane itself and the thin part of the three
axis objects.

Scaling
To scale the object click with the left mouse button on the box
manipulators at the end of the axes and pull them back and forth.
Depending on the object the manipulators work independently or
synchronously.
Out of plane shifting
To shift the object along its normal vector, pull the long box on the
center of an axis with the left mouse button. For the clipping plane
there is only one manipulator along the normal vector.
In plane shifting
To move the center of the clipping plane, click on the plane object
and pull it to the desired location.
Rotation

Manual - FreeCAD Documentation

35 von 244

< previous: Getting started (/wiki/index.php?title=Getting_started)
next: Document structure > (/wiki
/index.php?title=Document_structure)

Clicking on the thin part of the axes puts the manipulator in rotation
mode.

Hardware support
FreeCAD also supports some 3D input devices (/wiki
/index.php?title=3D_input_devices).

Mac OS X Issues
Recently we got reports on the forum (http://forum.freecadweb.org
/viewtopic.php?f=3&t=3592&start=0) from Mac users that those mouse button
and key combination do not work as expected. Unfortunately, none of the
developers owns a Mac, neither do the other regular contributors. We need
your help to determine which mouse buttons and key combination work so we
can update this wiki.

Index (/wiki/index.php?title=Online_Help_Toc)

The FreeCAD Document

A FreeCAD document contains all the objects of your scene. It can contain
groups, and objects made with any workbench. You can therefore switch
between workbenches, and still work on the same document. The document is
what gets saved to disk when you save your work. You can also open several
documents at the same time in FreeCAD, and open several views of the same
document.

Inside the document, the objects can be moved into groups, and have a unique
name. Managing groups, objects and object names is done mainly from the
Tree view. It can also be done, of course, like everything in FreeCAD, from the
python interpreter. In the Tree view, you can create groups, move objects to
groups, delete objects or groups, by right-clicking in the tree view or on an
object, rename objects by double-clicking on their names, or possibly other
operations, depending on the current workbench.

The objects inside a FreeCAD document can be of different types. Each

 (/wiki

/index.php?title=File:Screenshot_treeview.jpg)

Manual - FreeCAD Documentation

36 von 244

< previous: Mouse Model (/wiki/index.php?title=Mouse_Model)

workbench can create its own types of objects, for example the Mesh
Workbench (/wiki/index.php?title=Mesh_Workbench) creates mesh objects, the
Part Workbench (/wiki/index.php?title=Part_Workbench) create Part objects,
the Draft Workbench (/wiki/index.php?title=Draft_Workbench) also creates
Part objects, etc.

If there is at least one document open in FreeCAD, there is always one and only
one active document. That's the document that appears in the current 3D view,
the document you are currently working on.

Application and User Interface
Like almost everything else in FreeCAD, the user interface part (Gui) is
separated from the base application part (App). This is also valid for
documents. The documents are also made of two parts: the Application
document, which contains our objects, and the View document, which contains
the representation on screen of our objects.

Think of it as two spaces, where the objects are defined. Their constructive
parameters (is it a cube? a cone? which size?) are stored in the Application
document, while their graphical representation (is it drawn with black lines?
with blue faces?) are stored in the View document. Why is that? Because
FreeCAD can also be used WITHOUT graphical interface, for example inside
other programs, and we must still be able to manipulate our objects, even if
nothing is drawn on the screen.

Another thing that is contained inside the View document are 3D views. One
document can have several views opened, so you can inspect your document
from several points of view at the same time. Maybe you would want to see a
top view and a front view of your work at the same time? Then, you will have
two views of the same document, both stored in the View document. Creating
new views or closing views can be done from the View menu or by right-
clicking on a view tab.

Scripting
Documents can be easily created, accessed and modified from the python
interpreter. For example:

FreeCAD.ActiveDocument

Will return the current (active) document

FreeCAD.ActiveDocument.Blob

Would access an object called "Blob" inside your document

FreeCADGui.ActiveDocument

Will return the view document associated to the current document

FreeCADGui.ActiveDocument.Blob

Would access the graphical representation (view) part of our Blob object

FreeCADGui.ActiveDocument.ActiveView

Will return the current view

Index

Manual - FreeCAD Documentation

37 von 244

next: Preferences Editor > (/wiki/index.php?title=Preferences_Editor)
(/wiki/index.php?title=Online_Help_Toc)

Setting User Preferences
The preferences system of FreeCAD is located in the Edit menu -> Preferences.

FreeCAD functionality is divided into different modules, each module being
responsible for the working of a specific workbench (/wiki
/index.php?title=Workbenches). FreeCAD also uses a concept called late
loading, which means that components are loaded only when they are needed.
You may have noticed that when you select a workbench on the FreeCAD
toolbar, that workbench and all its components get loaded at that moment.
This includes its preferences settings.

 (/wiki

/index.php?title=File:Screenshot_preferences01.jpg)

The general preferences settings

When you start FreeCAD with no workbench loaded, you will then have a
minimal preferences window. As you load additional modules, new sections
will appear in the preferences window, allowing you to configure the details of
each workbench.

Without any module loaded, you will have access to two configuration sections,
responsible for the general application settings and for the display settings.

Manual - FreeCAD Documentation

38 von 244

< previous: Document structure (/wiki
/index.php?title=Document_structure)
next: Interface Customization > (/wiki
/index.php?title=Interface_Customization)

 (/wiki

/index.php?title=File:Screenshot_preferences02.jpg)

The display settings

FreeCAD is always in constant evolution, so the contents of those screens
might differ from the above screenshots. The settings are usually
self-explanatory, so you shouldn't have any difficulty configuring FreeCAD to
your needs.

The Draft module has its preferences (/wiki/index.php?title=Draft_Preferences)
screen

Index (/wiki/index.php?title=Online_Help_Toc)

Customizing the Interface
Since FreeCAD interface is based on the modern Qt (http://en.wikipedia.org
/wiki/Qt_(toolkit)) toolkit, it has a state-of-the-art organization. Widgets,
menus, toolbars and other tools can be modified, moved, shared between
workbenches, keyboard shortcuts can be set, modified, and macros can be
recorded and played. The customization window is accessed from the Tools ->
Customize menu:

Manual - FreeCAD Documentation

39 von 244

< previous: Preferences Editor (/wiki

 (/wiki

/index.php?title=File:Screenshot-customize.jpg)

The Commands tab lets you browse all available FreeCAD commands,
organized by their category.

In Keyboard, you can see the keyboard shortcuts associated with every
FreeCAD command, and if you want, modify or assign new shortcut to any
command. This is where to come if you use a particular workbench often, and
would like to speed up its use by using the keyboard.

The Toolbars and Toolbox bars tabs let you modify existing toolbars, or create
your own custom toolbars.

The Macros tab lets you manage your saved Macros (/wiki
/index.php?title=Macros).

Create your Toolbars for your macro Customize Toolbars (/wiki
/index.php?title=Customize_Toolbars)

In 0.16 version is available a new tool that lets you manage your workbenches

(/wiki/index.php?title=File:CustomizeWorkbenches.png)

Manual - FreeCAD Documentation

40 von 244

/index.php?title=Preferences_Editor)
next: Property editor > (/wiki/index.php?title=Property_editor)

< previous: Interface Customization (/wiki
/index.php?title=Interface_Customization)

next: Workbenches > (/wiki/index.php?title=Workbenches)

Index
(/wiki/index.php?title=Online_Help_Toc)

Object properties
A property is a piece of information like a number or a text string that is
attached to a FreeCAD document or an object in a document. Properties can be
viewed and - if allowed - modified with the Property editor (/wiki
/index.php?title=Property_editor).

Properties play a very important part in FreeCAD, since it is from the beginning
made to work with parametric objects, which are objects defined only by their
properties.

Custom scripted objects (/wiki/index.php?title=Scripted_objects) in FreeCAD
can have properties of the following types:

Boolean

Float

FloatList

FloatConstraint

Angle

Distance

Integer

IntegerConstraint

Percent

Enumeration

IntegerList

String

StringList

Link

LinkList

Matrix

Vector

VectorList

Placement

PlacementLink

Color

ColorList

Material

Path

File

FileIncluded

PartShape

FilletContour

Circle

Index
(/wiki/index.php?title=Online_Help_Toc)

Working with workbenches
FreeCAD, like many modern design applications such as Revit
(http://en.wikipedia.org/wiki/Revit) or CATIA (http://en.wikipedia.org
/wiki/CATIA), is based on the concept of Workbench (http://en.wikipedia.org
/wiki/Workbench). A workbench can be considered as a set of tools specially

Manual - FreeCAD Documentation

41 von 244

grouped for a certain task. In a traditional furniture workshop, you would have
a work table for the person who works with wood, another one for the one who
works with metal pieces, and maybe a third one for the guy who mounts all the
pieces together.

In FreeCAD, the same concept applies. Tools are grouped into workbenches
according to the tasks they are related to.

When you switch from one workbench to another, the tools available on the
interface change. Toolbars, command bars and possibly other parts of the
interface switch to the new workbench, but the contents of your scene doesn't
change. You could, for example, start drawing 2D shapes with the Draft
Workbench, then work further on them with the Part Workbench.

Note that sometimes a Workbench is referred to as a Module. However,
Workbenches and Modules are different entities. A Module is any extension of
FreeCAD, while a Workbench is a special GUI configuration that groups some
toolbars and menus. Usually every Module contains its own Workbench, hence
the cross-use of the name.

Built-in workbenches
The following workbenches are available on every FreeCAD installation:

 (/wiki/index.php?title=File:Workbench_Arch.png) The Arch Module (/wiki
/index.php?title=Arch_Module) for working with architectural elements.

 (/wiki/index.php?title=File:Workbench_Assembly.png) The Assembly
Module (/wiki/index.php?title=Assembly_project) for working with
multiple shapes, multiple documents, multiple files, multiple
relationships...

 (/wiki/index.php?title=File:Workbench_Complete.png) The Complete
Workbench (/wiki/index.php?title=Complete_Workbench) hold all
commands and features from all the modules and workbenches which met
certain quality criteria.

 (/wiki/index.php?title=File:Workbench_Draft.png) The Draft Workbench
(/wiki/index.php?title=Draft_Module) contains 2D tools and basic 2D and
3D CAD operations.

 (/wiki/index.php?title=File:Workbench_Drawing.png) The Drawing
workbench (/wiki/index.php?title=Drawing_Module) for displaying your 3D
work on a 2D sheet.

 (/wiki/index.php?title=File:Workbench_FEM.png) The FEM Module (/wiki
/index.php?title=FEM_Module) provides Finite Element Analysis (FEA)
workflow.

 (/wiki/index.php?title=File:Workbench_Image.png) The Image Module
(/wiki/index.php?title=Image_Module) for working with bitmap images.

 (/wiki/index.php?title=File:Workbench_Inspection.png) The Inspection
Module (/wiki/index.php?title=Inspection_Workbench) is made to give you
specific tools for examination of shapes. It is still in development.

 (/wiki/index.php?title=File:Workbench_Mesh.png) The Mesh Module
(/wiki/index.php?title=Mesh_Module) for working with triangulated
meshes.

 (/wiki/index.php?title=File:Workbench_OpenSCAD.png) The OpenSCAD

Manual - FreeCAD Documentation

42 von 244

Module (/wiki/index.php?title=OpenSCAD_Module) for interoperability
with OpenSCAD and repairing CSG model history.

 (/wiki/index.php?title=File:Workbench_Part.png) The Part Module (/wiki
/index.php?title=Part_Module) for working with CAD parts.

 (/wiki/index.php?title=File:Workbench_PartDesign.png) The Part Design
Workbench (/wiki/index.php?title=PartDesign_Workbench) for building
Part shapes from sketches.

 (/wiki/index.php?title=File:Workbench_Path.png) The Path Workbench
(/wiki/index.php?title=Path_Workbench) is used to produce G-Code
instructions. It is still in early stages of development. Only v 0.16

 (/wiki/index.php?title=File:Workbench_Plot.png) The Plot Workbench
(/wiki/index.php?title=Plot_Module) The Plot module allows to edit and
save output plots created from other modules and tools.

 (/wiki/index.php?title=File:Workbench_Points.png) The Points Module
(/wiki/index.php?title=Points_Module) for working with point clouds.

 (/wiki/index.php?title=File:Workbench_Raytracing.png) The Raytracing
Module (/wiki/index.php?title=Raytracing_Module) for working with
ray-tracing (rendering)

 (/wiki/index.php?title=File:Workbench_Reverse_Engineering.png) The
Reverse Engineering Module (/wiki
/index.php?title=Reverse_Engineering_Workbench) is intended to give you
specific tools to convert shapes/solids/meshes into parametric FreeCAD-
compatible features. It is still in development.

 (/wiki/index.php?title=File:Workbench_Robot.png) The Robot Module
(/wiki/index.php?title=Robot_Module) for studying robot movements.

 (/wiki/index.php?title=File:Workbench_Ship.png) The Ship Workbench
(/wiki/index.php?title=Ship_Workbench) FreeCAD-Ship works over Ship
entities, that must be created on top of provided geometry.

 (/wiki/index.php?title=File:Workbench_Sketcher.png) The Sketcher
Module (/wiki/index.php?title=Sketcher_Module) for working with
geometry-constrained sketches.

 (/wiki/index.php?title=File:Workbench_Spreadsheet.png) The
Spreadsheet Workbench (/wiki/index.php?title=Spreadsheet_Module) for
creating and manipulating spreadsheet data.

 (/wiki/index.php?title=File:Workbench_Start.png) The Start Center (/wiki
/index.php?title=Start_Workbench) allows you to quickly jump to one of
the most common workbenches.

 (/wiki/index.php?title=File:Workbench_TechDraw.png) The TechDraw
Workbench (/wiki/index.php?title=TechDraw_Module) is the more
advanced and feature-rich successor of Drawing (/wiki
/index.php?title=Drawing_Module)

 (/wiki/index.php?title=File:Workbench_Test.png) The Test framework
(/wiki/index.php?title=Debugging) is for debugging FreeCAD.

 (/wiki/index.php?title=File:Workbench_Web.png) The Web Module (/wiki
/index.php?title=Web_Workbench) provides you with a browser window
instead of the 3D-View within FreeCAD.

Manual - FreeCAD Documentation

43 von 244

< previous: Property editor (/wiki/index.php?title=Property_editor)
next: PartDesign Workbench > (/wiki
/index.php?title=PartDesign_Workbench)

External workbenches
FreeCAD workbenches are easy to program in Python (http://www.python.org),
there are therefore many people developing additional workbenches outside
of the FreeCAD codebase. The External workbenches (/wiki
/index.php?title=External_workbenches) page has some information and
tutorials about some of them, and the FreeCAD Addons (https://github.com
/FreeCAD/FreeCAD-addons) project aims at gathering them and making them
easily installable from within FreeCAD.

New workbenches are in development, stay tuned!

Index (/wiki/index.php?title=Online_Help_Toc)

The PartDesign workbench
The Part Design Workbench provides tools for modelling complex solid parts
and is based on a Feature editing methodology to produce a single contiguous
solid. It is intricately linked with the Sketcher Workbench (/wiki
/index.php?title=Sketcher_Workbench).

What is a single contiguous solid? This is an item like a casting or something
machined from a single block of metal. If the item involves nails, screws, glue
or welding, it is not a single contiguous solid. As a practical example,
PartDesign would not be used to model a wooden chair, but would be used to
model the subcomponents (legs, slats, seat, etc). The subcomponents are
combined using the Assembly (/wiki/index.php?title=Assembly_Workbench),
Part (/wiki/index.php?title=Part_Workbench) or Draft (/wiki
/index.php?title=Draft_Workbench) workbench.

 (/wiki

/index.php?title=File:Revolve3_cropped.png)

Basic Workflow
The sketch is the building block for creating and editing solid parts. The

Manual - FreeCAD Documentation

44 von 244

workflow can be summarized by this: a sketch containing 2D geometry is
created first, then a solid creation tool is used on the sketch. At the moment
the available tools are:

 (/wiki/index.php?title=File:PartDesign_Pad.png) Pad which extrudes a
sketch

 (/wiki/index.php?title=File:PartDesign_Pocket.png) Pocket which
creates a pocket on an existing solid

 (/wiki/index.php?title=File:PartDesign_Revolution.png) Revolution
which creates a solid by revolving a sketch along an axis

 (/wiki/index.php?title=File:PartDesign_Groove.png) Groove which
creates a groove in an existing solid

More tools are planned in future releases.

A very important concept in the PartDesign Workbench is the sketch support.
Sketches can be created on standard planes (XY, XZ, YZ and planes parallel to
them) or on a planar face of an existing solid. For this last case, the existing
solid becomes the support of the sketch. Several tools will only work with
sketches that have a support, for example, Pocket - without a support there
would be nothing to remove material from!

After solid geometry has been created it can be modified with chamfers and
fillets or transformed, e.g. mirrored or patterned.

The PartDesign Workbench is meant to create a single, connected solid.
Multiple solids will be possible with the Assembly workbench (/wiki
/index.php?title=Assembly_Workbench).

As we create a model in the Part Design Workbench, each feature takes the
shape of the last one and adds or removes something, creating linear
dependencies from feature to feature as the model is created. Hence a "Cut"
feature is not only the cut hole itself, but the whole part with the cut. As a new
feature is added to the model, FreeCAD turns off visibility of the old features.
The user usually should only have the newest item (feature) in the model tree
visible, because otherwise the other phases of the model overlay each other,
and holes are filled in by the earlier model features that didn't yet have those
holes.

To toggle visibility of an object on or off, select it in the hierarchy tree and
press the Spacebar. Usually everything but the last item in the hierarchy tree
should be greyed out and therefore not visible in the 3D view.

The Tools
The Part Design tools are all located in the Part Design menu that appears
when you load the Part Design module.

They include the Sketcher Workbench (/wiki
/index.php?title=Sketcher_Workbench) tools, since the Part Design module is
so dependent on them.

The Sketcher Tools

Sketcher Geometries

These are tools for creating objects.

 (/wiki/index.php?title=File:Sketcher_CreatePoint.png) Point (/wiki
/index.php?title=Sketcher_Point): Draws a point.

Manual - FreeCAD Documentation

45 von 244

 (/wiki/index.php?title=File:Sketcher_Line.png) Line by 2 point (/wiki
/index.php?title=Sketcher_Line): Draws a line segment from 2 points.

 (/wiki/index.php?title=File:Sketcher_Arc.png) Arc (/wiki
/index.php?title=Sketcher_Arc): Draws an arc segment from center, radius,
start angle and end angle.

 (/wiki/index.php?title=File:Sketcher_CreateArc3Point.png) Arc by 3
Point (/wiki/index.php?title=Sketcher_Arc3Point): Draws an arc segment
from two endpoints and another point on the circumference.

 (/wiki/index.php?title=File:Sketcher_Circle.png) Circle (/wiki
/index.php?title=Sketcher_Circle): Draws a circle from center and radius.

 (/wiki/index.php?title=File:Sketcher_CreateCircle3Point.png) Circle by
3 Point (/wiki/index.php?title=Sketcher_Circle3Point) : Draws a circle from
three points on the circumference.

 (/wiki/index.php?title=File:Sketcher_Conics.png) Conic sections (/wiki
/index.php?title=Sketcher_Conic_Sections):

 (/wiki/index.php?title=File:Sketcher_CreateEllipse.png) Ellipse by
center (/wiki/index.php?title=Sketcher_Ellipse) : Draws an ellipse by
center point, major radius point and minor radius point. (v0.15)

 (/wiki/index.php?title=File:Sketcher_CreateEllipse_3points.png)
Ellipse by 3 points (/wiki
/index.php?title=Sketcher_Ellipse_by_3_Points) : Draws an ellipse by
major diameter (2 points) and minor radius point. (v0.15)

 (/wiki/index.php?title=File:Sketcher_Elliptical_Arc.png) Arc of
ellipse (/wiki/index.php?title=Sketcher_Arc_of_Ellipse) : Draws an arc
of ellipse by center point, major radius point, starting point and
ending point. (v0.15)

 (/wiki/index.php?title=File:Sketcher_Hyperbolic_Arc.png) Arc of
hyperbola (/wiki/index.php?title=Sketcher_Arc_of_Hyperbola&
action=edit&redlink=1): Draws an arc of hyperbola. (v0.17)

 (/wiki/index.php?title=File:Sketcher_Parabolic_Arc.png) Arc of
parabola (/wiki/index.php?title=Sketcher_Arc_of_Parabola&
action=edit&redlink=1): Draws an arc of parabola. (v0.17)

 (/wiki/index.php?title=File:Sketcher_CreatePolyline.png) Polyline
(multiple-point line) (/wiki/index.php?title=Sketcher_Polyline): Draws a
line made of multiple line segments. Pressing the M key while drawing a
Polyline toggles between the different polyline modes.

 (/wiki/index.php?title=File:Sketcher_CreateRectangle.png) Rectangle
(/wiki/index.php?title=Sketcher_Rectangle): Draws a rectangle from 2
opposite points.

 (/wiki/index.php?title=File:Sketcher_CreateTriangle.png) Triangle
(/wiki/index.php?title=Sketcher_Triangle): Draws a regular triangle
inscribed in a construction geometry circle. (v0.15)

 (/wiki/index.php?title=File:Sketcher_CreateSquare.png) Square (/wiki
/index.php?title=Sketcher_Square): Draws a regular square inscribed in a
construction geometry circle. (v0.15)

Manual - FreeCAD Documentation

46 von 244

 (/wiki/index.php?title=File:Sketcher_CreatePentagon.png) Pentagon
(/wiki/index.php?title=Sketcher_Pentagon): Draws a regular pentagon
inscribed in a construction geometry circle. (v0.15)

 (/wiki/index.php?title=File:Sketcher_CreateHexagon.png) Hexagon
(/wiki/index.php?title=Sketcher_Hexagon): Draws a regular hexagon
inscribed in a construction geometry circle. (v0.15)

 (/wiki/index.php?title=File:Sketcher_CreateHeptagon.png) Heptagon
(/wiki/index.php?title=Sketcher_Heptagon): Draws a regular heptagon
inscribed in a construction geometry circle. (v0.15)

 (/wiki/index.php?title=File:Sketcher_CreateOctagon.png) Octagon
(/wiki/index.php?title=Sketcher_Octagon): Draws a regular octagon
inscribed in a construction geometry circle. (v0.15)

 (/wiki/index.php?title=File:Sketcher_CreateSlot.png) Slot (/wiki
/index.php?title=Sketcher_Slot): Draws an oval by selecting the center of
one semicircle and an endpoint of the other semicircle.

 (/wiki/index.php?title=File:Sketcher_CreateFillet.png) Fillet (/wiki
/index.php?title=Sketcher_Fillet): Makes a fillet between two lines joined
at one point. Select both lines or click on the corner point, then activate
the tool.

 (/wiki/index.php?title=File:Sketcher_Trimming.png) Trimming (/wiki
/index.php?title=Sketcher_Trimming): Trims a line, circle or arc with
respect to the clicked point.

 (/wiki/index.php?title=File:Sketcher_External.png) External Geometry
(/wiki/index.php?title=Sketcher_External): Creates an edge linked to
external geometry.

 (/wiki/index.php?title=File:Sketcher_AlterConstruction.png)
Construction Mode (/wiki/index.php?title=Sketcher_ConstructionMode):
Toggles an element to/from construction mode. A construction object will
not be used in a 3D geometry operation and is only visible while editing
the Sketch that contains it. This is the icon that was used through v0.15.
Until FreeCAD v0.16 the user had to first create regular (white) geometry in
Sketcher and then use this tool to change it to Construction Geometry
(blue).

 (/wiki/index.php?title=File:Sketcher_ToggleConstruction.png)
Construction Mode (/wiki/index.php?title=Sketcher_ToggleConstruction):
In FreeCAD v0.16 the ability to create geometry directly in Construction
Mode was added, and so the icon was changed to this one. Selecting
existing Sketcher geometry and then clicking this tool toggles that
geometry between regular and construction mode just as in previous
FreeCAD versions. Starting with FreeCAD v0.16, selecting this tool when no
Sketcher geometry is selected changes the mode (regular vs. construction)
in which future objects will be created.

Sketcher Constraints

Constraints are used to define lengths, set rules between sketch elements, and
to lock the sketch along the vertical and horizontal axes. Some constraints
require the Helper constraints (/wiki
/index.php?title=Sketcher_helper_constraint)

Manual - FreeCAD Documentation

47 von 244

Not associated with numeric data

 (/wiki/index.php?title=File:Constraint_PointOnPoint.png) Coincident
(/wiki/index.php?title=Constraint_PointOnPoint): Affixes a point onto
(coincident with) one or more other points.

 (/wiki/index.php?title=File:Constraint_PointOnObject.png) Point On
Object (/wiki/index.php?title=Constraint_PointOnObject): Affixes a point
onto another object such as a line, arc, or axis.

 (/wiki/index.php?title=File:Constraint_Vertical.png) Vertical (/wiki
/index.php?title=Constraint_Vertical): Constrains the selected lines or
polyline elements to a true vertical orientation. More than one object can
be selected before applying this constraint.

 (/wiki/index.php?title=File:Constraint_Horizontal.png) Horizontal
(/wiki/index.php?title=Constraint_Horizontal): Constrains the selected
lines or polyline elements to a true horizontal orientation. More than one
object can be selected before applying this constraint.

 (/wiki/index.php?title=File:Constraint_Parallel.png) Parallel (/wiki
/index.php?title=Constraint_Parallel): Constrains two or more lines
parallel to one another.

 (/wiki/index.php?title=File:Constraint_Perpendicular.png)
Perpendicular (/wiki/index.php?title=Constraint_Perpendicular):
Constrains two lines perpendicular to one another, or constrains a line
perpendicular to an arc endpoint.

 (/wiki/index.php?title=File:Constraint_Tangent.png) Tangent (/wiki
/index.php?title=Constraint_Tangent): Creates a tangent constraint
between two selected entities, or a co-linear constraint between two line
segments. A line segment does not have to lie directly on an arc or circle
to be constrained tangent to that arc or circle.

 (/wiki/index.php?title=File:Constraint_EqualLength.png) Equal Length
(/wiki/index.php?title=Constraint_EqualLength): Constrains two selected
entities equal to one another. If used on circles or arcs their radii will be
set equal.

 (/wiki/index.php?title=File:Constraint_Symmetric.png) Symmetric
(/wiki/index.php?title=Constraint_Symmetric): Constrains two points
symmetrically about a line, or constrains the first two selected points
symmetrically about a third selected point.

Associated with numeric data

For these constraints you can use the expressions (/wiki
/index.php?title=Expressions). The data may be taken from a spreadsheet
(/wiki/index.php?title=Spreadsheet_Workbench).

 (/wiki/index.php?title=File:Sketcher_ConstrainLock.png) Lock (/wiki
/index.php?title=Constraint_Lock): Constrains the selected item by setting
vertical and horizontal distances relative to the origin, thereby locking the
location of that item. These constraint distances can be edited later.

 (/wiki/index.php?title=File:Constraint_HorizontalDistance.png)
Horizontal Distance (/wiki

Manual - FreeCAD Documentation

48 von 244

/index.php?title=Constraint_HorizontalDistance): Fixes the horizontal
distance between two points or line endpoints. If only one item is
selected, the distance is set to the origin.

 (/wiki/index.php?title=File:Constraint_VerticalDistance.png) Vertical
Distance (/wiki/index.php?title=Constraint_VerticalDistance): Fixes the
vertical distance between 2 points or line endpoints. If only one item is
selected, the distance is set to the origin.

 (/wiki/index.php?title=File:Constraint_Length.png) Length (/wiki
/index.php?title=Constraint_Length): Defines the distance of a selected
line by constraining its length, or defines the distance between two points
by constraining the distance between them.

 (/wiki/index.php?title=File:Constraint_Radius.png) Radius (/wiki
/index.php?title=Constraint_Radius): Defines the radius of a selected arc
or circle by constraining the radius.

 (/wiki/index.php?title=File:Constraint_InternalAngle.png) Internal
Angle (/wiki/index.php?title=Constraint_InternalAngle): Defines the
internal angle between two selected lines.

 (/wiki/index.php?title=File:Constraint_SnellsLaw.png) Snell's Law
(/wiki/index.php?title=Constraint_SnellsLaw): Constrains two lines to obey
a refraction law to simulate the light going through an interface. (v 0.15)

 (/wiki/index.php?title=File:Constraint_InternalAlignment.png) Internal
Alignment (/wiki/index.php?title=Constraint_Internal_Alignment): Aligns
selected elements to selected shape (e.g. a line to become major axis of
an ellipse).

 (/wiki/index.php?title=File:Sketcher_ToggleConstraint.png) Toggle
Constraint (/wiki/index.php?title=Sketcher_ToggleConstraint): Toggles the
toolbar or the selected constraints to/from reference mode. v0.16

Other

 (/wiki/index.php?title=File:Sketcher_NewSketch.png) New sketch
(/wiki/index.php?title=Sketcher_NewSketch): Creates a new sketch on a
selected face or plane. If no face is selected while this tool is executed the
user is prompted to select a plane from a pop-up window.

 (/wiki/index.php?title=File:Sketcher_EditSketch.png) Edit sketch (/wiki
/index.php?title=Sketcher_EditSketch): Edit the selected Sketch.

 (/wiki/index.php?title=File:Sketcher_LeaveSketch.png) Leave sketch
(/wiki/index.php?title=Sketcher_LeaveSketch): Leave the Sketch editing
mode.

 (/wiki/index.php?title=File:Sketcher_ViewSketch.png) View sketch
(/wiki/index.php?title=Sketcher_ViewSketch): Sets the model view
perpendicular to the sketch plane.

 (/wiki/index.php?title=File:Sketcher_MapSketch.png) Map sketch to
face (/wiki/index.php?title=Sketcher_MapSketch): Maps a sketch to the
previously selected face of a solid.

Manual - FreeCAD Documentation

49 von 244

Reorient sketch (/wiki/index.php?title=Sketcher_Reorient): Allows you to
change the position of a sketch
Validate sketch (/wiki/index.php?title=Sketcher_Validate): It allows you to
check if there are in the tolerance of different points and to match them.

 (/wiki/index.php?title=File:Sketcher_MergeSketch.png) Merge sketches
(/wiki/index.php?title=Sketcher_MergeSketch): Merge two or more
sketches. [v 0.15]

 (/wiki/index.php?title=File:Sketcher_MirrorSketch.png) Mirror sketch
(/wiki/index.php?title=Sketcher_MirrorSketch): Mirror a sketch along the
x-axis, the y-axis or the origin [v 0.16]

 (/wiki/index.php?title=File:Sketcher_CloseShape.png) Close Shape
(/wiki/index.php?title=Sketcher_CloseShape): Creates a closed shape by
applying coincident constraints to endpoints [v 0.15]

 (/wiki/index.php?title=File:Sketcher_ConnectLines.png) Connect Edges
(/wiki/index.php?title=Sketcher_ConnectLines): Connect sketcher
elements by applying coincident constraints to endpoints [v 0.15]

 (/wiki/index.php?title=File:Sketcher_SelectConstraints.png) Select
Constraints (/wiki/index.php?title=Sketcher_SelectConstraints): Selects the
constraints of a sketcher element [v 0.15]

 (/wiki/index.php?title=File:Sketcher_SelectOrigin.png) Select Origin
(/wiki/index.php?title=Sketcher_SelectOrigin): Selects the origin of a
sketch [v 0.15]

 (/wiki/index.php?title=File:Sketcher_SelectVerticalAxis.png) Select
Vertical Axis (/wiki/index.php?title=Sketcher_SelectVerticalAxis): Selects
the vertical axis of a sketch [v 0.15]

 (/wiki/index.php?title=File:Sketcher_SelectHorizontalAxis.png) Select
Horizontal Axis (/wiki/index.php?title=Sketcher_SelectHorizontalAxis):
Selects the horizontal axis of a sketch [v 0.15]

 (/wiki/index.php?title=File:Sketcher_SelectRedundantConstraints.png)
Select Redundant Constraints (/wiki
/index.php?title=Sketcher_SelectRedundantConstraints): Selects
redundant constraints of a sketch [v 0.15]

 (/wiki/index.php?title=File:Sketcher_SelectConflictingConstraints.png)
Select Conflicting Constraints (/wiki
/index.php?title=Sketcher_SelectConflictingConstraints): Selects
conflicting constraints of a sketch [v 0.15]

 (/wiki
/index.php?title=File:Sketcher_SelectElementsAssociatedWithConstraints.png)
Select Elements Associated with constraints (/wiki
/index.php?title=Sketcher_SelectElementsAssociatedWithConstraints):
Select sketcher elements associated with constraints [v 0.15]

 (/wiki/index.php?title=File:Sketcher_Element_Ellipse_All.png)

Manual - FreeCAD Documentation

50 von 244

Show/Hide internal geometry (/wiki
/index.php?title=Sketcher_Show_Hide_Internal_Geometry): Recreates
missing/deletes unneeded geometry aligned to internal geometry of a
selected element (applicable only to ellipse so far). [v 0.15]

 (/wiki/index.php?title=File:Sketcher_Symmetry.png) Symmetry (/wiki
/index.php?title=Sketcher_Symmetry): Copies a sketcher element
symmetrical to a chosen line [v 0.16]

 (/wiki/index.php?title=File:Sketcher_Clone.png) Clone (/wiki
/index.php?title=Sketcher_Clone): Clones a sketcher element [v 0.16]

 (/wiki/index.php?title=File:Sketcher_Copy.png) Copy (/wiki
/index.php?title=Sketcher_Copy): Copies a sketcher element [v 0.16]

 (/wiki/index.php?title=File:Sketcher_RectangularArray.png)
Rectangular Array (/wiki/index.php?title=Sketcher_RectangularArray):
Creates an array of selected sketcher elements [v 0.16]

The Part Design Tools

Construction tools

These are tools for creating solid objects or removing material from an existing
solid object.

 (/wiki/index.php?title=File:PartDesign_Pad.png) Pad (/wiki
/index.php?title=PartDesign_Pad): Extrudes a solid object from a selected
sketch.

 (/wiki/index.php?title=File:PartDesign_Pocket.png) Pocket (/wiki
/index.php?title=PartDesign_Pocket): Creates a pocket from a selected
sketch. The sketch must be mapped to an existing solid object's face.

 (/wiki/index.php?title=File:PartDesign_Revolution.png) Revolution
(/wiki/index.php?title=PartDesign_Revolution): Creates a solid by
revolving a sketch around an axis. The sketch must be a closed profile to
get a solid object.

 (/wiki/index.php?title=File:PartDesign_Groove.png) Groove (/wiki
/index.php?title=PartDesign_Groove): Creates a groove by revolving a
sketch around an axis. The sketch must be mapped to an existing solid
object's face.

Modification tools

These are tools for modifying existing objects. They will allow you to choose
which object to modify.

 (/wiki/index.php?title=File:PartDesign_Fillet.png) Fillet (/wiki
/index.php?title=PartDesign_Fillet): Fillets (rounds) edges of an object.

 (/wiki/index.php?title=File:PartDesign_Chamfer.png) Chamfer (/wiki
/index.php?title=PartDesign_Chamfer): Chamfers edges of an object.

 (/wiki/index.php?title=File:PartDesign_Draft.png) Draft (/wiki
/index.php?title=PartDesign_Draft): Applies angular draft to faces of an
object.

Transformation tools

Manual - FreeCAD Documentation

51 von 244

These are tools for transforming existing features. They will allow you to
choose which features to transform.

 (/wiki/index.php?title=File:PartDesign_Mirrored.png) Mirrored (/wiki
/index.php?title=PartDesign_Mirrored): Mirrors features on a plane or face.

 (/wiki/index.php?title=File:PartDesign_LinearPattern.png) Linear
Pattern (/wiki/index.php?title=PartDesign_LinearPattern): Creates a linear
pattern of features.

 (/wiki/index.php?title=File:PartDesign_PolarPattern.png) Polar Pattern
(/wiki/index.php?title=PartDesign_PolarPattern): Creates a polar pattern
of features.

 (/wiki/index.php?title=File:PartDesign_Scaled.png) Scaled (/wiki
/index.php?title=PartDesign_Scaled): Scales features to a different size.

 (/wiki/index.php?title=File:PartDesign_MultiTransform.png)
MultiTransform (/wiki/index.php?title=PartDesign_MultiTransform): Allows
creating a pattern with any combination of the other transformations.

Extras

Some optional functionality that has been created for the PartDesign
Workbench:

 (/wiki/index.php?title=File:PartDesign_WizardShaft.png) Shaft design
wizard (/wiki/index.php?title=PartDesign_WizardShaft): Generates a shaft
from a table of values and allows to analyze forces and moments

 (/wiki/index.php?title=File:PartDesign_InternalExternalGear.svg)
Involute gear (/wiki/index.php?title=PartDesign_InvoluteGear): allows you
to create gear

Feature properties

Properties

There are two types of feature properties, accessible through tabs at the
bottom of the Property editor:

VIEW View : properties related to the visual display of the object.

DATA Data : properties related to the physical parameters of an object.

View

Base
VIEW Bounding Box : To view the occupation, and, overall, of the object
dimensions in space. Value False, or True (Default, False).
VIEW Control Point : Value False, or True (Default, False).
VIEW Deviation : Sets the accuracy of the polygonal representation of the

Manual - FreeCAD Documentation

52 von 244

model in 3d view (tessellation). Lower values = better quality. The value is
in percent of object's size (deviation in mm =
(w+h+d)/3*valueInPercent/100, where w,h,d are sizes of bounding box).
VIEW Display Mode :Display mode of the form, Flat lines, Shaded, Wireframe,
Points (/wiki
/index.php?title=File:Vue_DisplayModePartDesign_fr_00.png). (Default, Flat
lines).
VIEW Lighting : Lighting One side, Two side (/wiki
/index.php?title=File:Vue_Lighting_fr_00.png). (Default, Two side).
VIEW Line Color : Gives the color of the line (edges) (Default, 25, 25, 25).
VIEW Line Width : Gives the thickness of the line (edges) (Default, 2).
VIEW Point Color : Gives the color of the points (ends of the form) (Default,
25, 25, 25).
VIEW Point Size : Gives the size of the points (Default, 2).
VIEW Selectable : Allows the selection of the form. Value False, ou True
(Default, True).
VIEW Shape Color : Give the color shape (default, 204, 204, 204).
VIEW Transparency : Sets the degree of transparency in the form of 0 to 100
(Default, 0).
VIEW Visibility : Determines the visibility of the form (like the bar SPACE).
Value False, or True (Default, True).

Data

 (/wiki

/index.php?title=File:PartDesign_Revolution_en_03.png)

Manual - FreeCAD Documentation

53 von 244

Base DATA Angle : The argument Angle, indicates the angle that will be used
with the option Axis (below). Here, an angle is defined. The angle on the axis is
set with the option Axis.
The object takes the specified angle around the specified axis.
An example, if you create an object with a required revolution should be rotate
functionality of a certain amount, in order to enable it to take the same angle
that another element existing.

DATA Axis : This option specifies the axis/axes to rotate the created object. The
exact value of rotation comes from the angle (see above) option.
This option takes three arguments, these arguments, are transmitted in the
form of numbers, x, y or z. Adding a value, more of an axis, will the rotation to
each specified axis angle.
For example, with a Angle of 15 ° : specifying, 1.0 for x and 2.0 for y, will rotate
15 ° and 30 ° in the y-axis and the x-axis (final position),

DATA Base : This option specifies the offset in either axes x, y, or z, and accept
any number as the argument for each field.

DATA Label : The Label is the name given to the operation, this name can be
changed at convenience.

DATA Placement : [(0.00 0.00 1.00);0.00;(0.00 0.00 0.00)] Summary below data.
Every feature has a placement that can be controlled through the Data
Properties table. It controls the placement of the part with respect to the
coordinate system. NOTE: The placement options do not affect the physical
dimensions of the feature, but merely its position in space!
If you select the title Placement (/wiki
/index.php?title=File:Tache_Placement_01_fr_00.png), a button with three
small points appears, clicking this button ... , you have access to the options
window Tasks_Placement (/wiki/index.php?title=Tasks_Placement).

DATA Angle : The Angle argument specifies the angle to be used with the axis
option (below). An angle is set here, and the axis that the angle acts upon is
set with the axis option. The feature is rotated by the specified angle, about
the specified axis. A usage example might be if you created a revolution

 (/wiki

/index.php?title=File:PartDesign_Revolution_en_04.png)

Manual - FreeCAD Documentation

54 von 244

< previous: Workbenches (/wiki/index.php?title=Workbenches)
next: Mesh Workbench > (/wiki/index.php?title=Mesh_Workbench)

feature as required, but then needed to rotate the whole feature by some
amount, in order to allow it to line-up with another pre-existing feature.

DATA Axis : This option specifies the axis/axes about which the created feature is
to be rotated. The exact value of rotation comes from the angle option (above).
This option takes three arguments, which are passed as numbers to either the
x, y, or z boxes in the tool. Adding a value to more than one of the axes will
cause the part to be rotated by the angle in each axis. For example, with an
angle of 15° set, specifying a value of 1.0 for x, and 2.0 for y will cause the
finished part to be rotated 15° in the x-axis AND 30° in the y-axis.

DATA Position : This option specifies the base point to which all dimensions
refer. This option takes three arguments, which are passed as numbers to
either the x, y, or z boxes in the tool. Adding a value to more than one of the
boxes will cause the part to be translated by the number of units along the
corresponding axis.

PS: The displayed properties can vary, depending on the tool used.

Tutorials
Only for a development version of FreeCAD that is not currently available as a
binary or installer:

PartDesign Bearingholder Tutorial I (/wiki
/index.php?title=PartDesign_Bearingholder_Tutorial_I)
PartDesign Bearingholder Tutorial II (/wiki
/index.php?title=PartDesign_Bearingholder_Tutorial_II)
PartDesign tutorial (/wiki/index.php?title=PartDesign_tutorial)
Basic Part Design Tutorial (/wiki
/index.php?title=Basic_Part_Design_Tutorial)
Sketcher tutorial (/wiki/index.php?title=Sketcher_tutorial)

Index

(/wiki/index.php?title=Online_Help_Toc)

The Mesh workbench
The Mesh Workbench handles triangle meshes (http://en.wikipedia.org
/wiki/Triangle_mesh). Meshes are a special type of 3D object, composed of
triangles connected by their edges and their corners (also called vertices).

Manual - FreeCAD Documentation

55 von 244

 (/wiki

/index.php?title=File:Mesh_example.jpg)

An example of a mesh object

Many 3D applications use meshes as their primary type of 3D object, like
sketchup (http://en.wikipedia.org/wiki/Sketchup), blender
(http://en.wikipedia.org/wiki/Blender_(software)), maya
(http://en.wikipedia.org/wiki/Maya_(software)) or 3d studio max
(http://en.wikipedia.org/wiki/3d_max). Since meshes are very simple objects,
containing only vertices (points), edges and (triangular) faces, they are very
easy to create, modify, subdivide, stretch, and can easily be passed from one
application to another without any loss. Besides, since they contain very
simple data, 3D applications can usually manage very large quantities of them
without any problem. For those reasons, meshes are often the 3D object type
of choice for applications dealing with movies, animation, and image creation.

In the field of engineering, however, meshes present one big limitation: They
are very dumb objects, only composed of points, lines and faces. They are only
made of surfaces, and have no mass information, so they don't behave as
solids. In a mesh there is no automatic way to know if a point is inside or
outside the object. This means that all solid-based operations, such as
addition or subtraction, are always a bit difficult to perform on meshes, and
return errors often.

In FreeCAD, since it is an engineering application, we would obviously prefer to
work with more intelligent types of 3D objects, that can carry more
information, such as mass, solid behaviour, or even custom parameters. The
mesh module was first created to serve as a testbed, but to be able to read,
manipulate and convert meshes is also highly important for FreeCAD. Very
often, in your workflow, you will receive 3D data in mesh format. You will need
to handle that data, analyse it to detect errors or other problems that prevent
converting them to more intelligent objects, and finally, convert them to more
intelligent objects, handled by the Part Module (/wiki
/index.php?title=Part_Module).

Using the mesh module
The mesh module has currently a very simple interface, all its functions are
grouped in the Mesh menu entry. The most important operations you can
currently do with meshes are:

 (/wiki/index.php?title=File:Mesh_ImportMesh.png) Import Mesh (/wiki
/index.php?title=Mesh_Import): Import meshes in several file formats

Manual - FreeCAD Documentation

56 von 244

 (/wiki/index.php?title=File:Mesh_ExportMesh.png) Export Mesh (/wiki
/index.php?title=Mesh_Export): Export meshes in several file formats

 (/wiki/index.php?title=File:Mesh_MeshFromShape.png) Create Mesh
from shape (/wiki/index.php?title=Mesh_MeshFromShape): Convert Part
(/wiki/index.php?title=Part_Module) objects into meshes

 (/wiki/index.php?title=File:Mesh_HarmonizeNormals.png) Harmonize
Normals (/wiki/index.php?title=Mesh_HarmonizeNormals): Harmonize
normals

 (/wiki/index.php?title=File:Mesh_FlipNormals.png) Flip Normals (/wiki
/index.php?title=Mesh_FlipNormals): Flip normals (http://en.wikipedia.org
/wiki/Surface_normal)
Fill Holes... (/wiki/index.php?title=Mesh_FillHoles): Fill up holes

 (/wiki/index.php?title=File:Mesh_FillInteractiveHole.png) Close hole
(/wiki/index.php?title=Mesh_FillInteractiveHole): Close holes in meshes

 (/wiki/index.php?title=File:Mesh_RemoveComponents.png) Remove
components... (/wiki/index.php?title=Mesh_RemoveComponents): Remove
components of meshes
Remove components by hand... (/wiki
/index.php?title=Mesh_RemoveCompByHand): Remove components of
meshes by hand
Add triangle (/wiki/index.php?title=Mesh_AddTriangle): Add triangle
Smooth... (/wiki/index.php?title=Mesh_Smooth): Smooth mesh

Analyze curvature, faces, and check if a mesh can be safely converted into
a solid

Evaluate & Repair mesh... (/wiki
/index.php?title=Mesh_EvaluateRepair): Evaluates and repairs meshes

 (/wiki/index.php?title=File:Mesh_EvaluateFacet.png) Face Info
(/wiki/index.php?title=Mesh_EvaluateFacet): Gives info on faces
Curvature Info (/wiki/index.php?title=Mesh_EvaluateCurvature): Gives
info on curvature
Check solid mesh (/wiki/index.php?title=Mesh_EvaluateSolid): Checks
the solid if it can be converted to a mesh
Boundings info... (/wiki/index.php?title=Mesh_BoundingBox):
Evaluates the bounding box of a mesh

 (/wiki/index.php?title=File:Mesh_Regular_Solid.png) Regular solid...
(/wiki/index.php?title=Mesh_BuildRegularSolid) Create mesh primitives,
like cubes, cylinders, cones, or spheres:

 (/wiki/index.php?title=File:Mesh_Cube.png) Create a mesh cube
 (/wiki/index.php?title=File:Mesh_Cylinder.png) Create a mesh

cylinder
 (/wiki/index.php?title=File:Mesh_Cone.png) Create a mesh cone
 (/wiki/index.php?title=File:Mesh_Sphere.png) Create a mesh

Manual - FreeCAD Documentation

57 von 244

< previous: PartDesign Workbench (/wiki
/index.php?title=PartDesign_Workbench)
next: OpenSCAD Module > (/wiki/index.php?title=OpenSCAD_Module)

sphere
 (/wiki/index.php?title=File:Mesh_Ellipsoid.png) Create a mesh

ellipsoid
 (/wiki/index.php?title=File:Mesh_Torus.png) Create a mesh torus

Do Boolean operations with meshes
Union (/wiki/index.php?title=Mesh_Union): Does a union (fusion) on
meshes
Intersection (/wiki/index.php?title=Mesh_Intersection): Does an
intersection (common) on meshes
Difference (/wiki/index.php?title=Mesh_Difference): Does a difference
(cut) on meshes

Merge (/wiki/index.php?title=Mesh_Merge): Merges meshes
Select Mesh (/wiki/index.php?title=Mesh_SelectMesh): Selects meshes

 (/wiki/index.php?title=File:Mesh_Cut.png) Cut mesh (/wiki
/index.php?title=Mesh_Cut): Cut meshes along a line
Split Mesh (/wiki/index.php?title=Mesh_SplitMesh): Splits meshes

 (/wiki/index.php?title=File:Mesh_MakeSegment.png) Make segment
(/wiki/index.php?title=Mesh_MakeSegment): Makes a segment
Trim mesh (/wiki/index.php?title=Mesh_TrimMesh): Trims meshes
Trim mesh with a plane (/wiki/index.php?title=Mesh_TrimMeshWithPlane):
Trims meshes with a plane
Create mesh segments... (/wiki
/index.php?title=Mesh_CreateMeshSegment): Creates mesh segments

 (/wiki/index.php?title=File:Mesh_CurvaturePlot.png) Curvature Plot
(/wiki/index.php?title=Mesh_CurvaturePlot): Creates a curvature plot

These are only some of the basic operations currently present in the Mesh
module interface.
More mesh tools are available in the OpenSCAD Workbench (/wiki
/index.php?title=OpenSCAD_Workbench).
But the FreeCAD meshes can also be handled in many more ways by scripting
(/wiki/index.php?title=Mesh_Scripting).

Links
FreeCAD and Mesh Import (/wiki
/index.php?title=FreeCAD_and_Mesh_Import)

Index (/wiki/index.php?title=Online_Help_Toc)

Manual - FreeCAD Documentation

58 von 244

The Part workbench
The CAD capabilities of FreeCAD are based on the OpenCasCade
(http://en.wikipedia.org/wiki/Open_CASCADE) kernel. The Part module allows
FreeCAD to access and use the OpenCasCade objects and functions.
OpenCascade is a professional-level CAD kernel, that features advanced 3D
geometry manipulation and objects. The Part objects, unlike Mesh Module
(/wiki/index.php?title=Mesh_Module) objects, are much more complex, and
therefore permit much more advanced operations, like coherent boolean
operations, modifications history and parametric behaviour.

 (/wiki

/index.php?title=File:Part_example.jpg)

Example of Part shapes in FreeCAD

The tools

The Part module tools are all located in the Part menu that appears when you
load the Part module.

Primitives

These are tools for creating primitive objects.

 (/wiki/index.php?title=File:Part_Box.png) Box (/wiki
/index.php?title=Part_Box): Draws a box by specifying its dimensions

 (/wiki/index.php?title=File:Part_Cone.png) Cone (/wiki
/index.php?title=Part_Cone): Draws a cone by specifying its dimensions

 (/wiki/index.php?title=File:Part_Cylinder.png) Cylinder (/wiki
/index.php?title=Part_Cylinder): Draws a cylinder by specifying its
dimensions

 (/wiki/index.php?title=File:Part_Sphere.png) Sphere (/wiki
/index.php?title=Part_Sphere): Draws a sphere by specifying its
dimensions

 (/wiki/index.php?title=File:Part_Torus.png) Torus (/wiki
/index.php?title=Part_Torus): Draws a torus (ring) by specifying its
dimensions

 (/wiki/index.php?title=File:Part_CreatePrimitives.png) CreatePrimitives
(/wiki/index.php?title=Part_CreatePrimitives): A tool to create various

Manual - FreeCAD Documentation

59 von 244

parametric geometric primitives
 (/wiki/index.php?title=File:Part_Shapebuilder.png) Shapebuilder

(/wiki/index.php?title=Part_Shapebuilder): A tool to create more complex
shapes from various parametric geometric primitives

Modifying objects

These are tools for modifying existing objects. They will allow you to choose
which object to modify.

 (/wiki/index.php?title=File:Part_Booleans.png) Booleans (/wiki
/index.php?title=Part_Booleans): Performs boolean operations on objects

 (/wiki/index.php?title=File:Part_Union.png) Union (/wiki
/index.php?title=Part_Union): Fuses (unions) two objects

 (/wiki/index.php?title=File:Part_Common.png) Common (/wiki
/index.php?title=Part_Common): Extracts the common (intersection) part
of two objects

 (/wiki/index.php?title=File:Part_Cut.png) Cut (/wiki
/index.php?title=Part_Cut): Cuts (subtracts) one object from another

 (/wiki/index.php?title=File:Part_JoinConnect.png) Join features (/wiki
/index.php?title=Part_CompJoinFeatures): smart booleans for walled
objects (e.g., pipes) (v0.16)

 (/wiki/index.php?title=File:Part_JoinConnect.png) Connect (/wiki
/index.php?title=Part_JoinConnect): Connects interiors of objects
(v0.16)

 (/wiki/index.php?title=File:Part_JoinEmbed.png) Embed (/wiki
/index.php?title=Part_JoinEmbed): Embeds a walled object into
another walled object (v0.16)

 (/wiki/index.php?title=File:Part_JoinCutout.png) Cutout (/wiki
/index.php?title=Part_JoinCutout): Creates a cutout in a wall of an
object for another walled object (v0.16)

Splitting tools: (v0.17)
 (/wiki/index.php?title=File:Part_BooleanFragments.png) Boolean

fragments (/wiki/index.php?title=Part_BooleanFragments): makes all
the pieces that can be obtained by Boolean operations between
objects (v0.17)

 (/wiki/index.php?title=File:Part_Slice.png) Slice (/wiki
/index.php?title=Part_Slice): Splits an object into pieces by
intersections with another object (v0.17)

 (/wiki/index.php?title=File:Part_XOR.png) XOR (/wiki
/index.php?title=Part_XOR&action=edit&redlink=1): removes space
shared by even number of objects (symmetric version of Cut (/wiki
/index.php?title=Part_Cut)) (v0.17)

 (/wiki/index.php?title=File:Part_Extrude.png) Extrude (/wiki
/index.php?title=Part_Extrude): Extrudes planar faces of an object

 (/wiki/index.php?title=File:Part_Fillet.png) Fillet (/wiki
/index.php?title=Part_Fillet): Fillets (rounds) edges of an object

Manual - FreeCAD Documentation

60 von 244

 (/wiki/index.php?title=File:Part_Revolve.png) Revolve (/wiki
/index.php?title=Part_Revolve): Creates a solid by revolving another object
(not solid) around an axis

 (/wiki/index.php?title=File:Part_Section.png) Section (/wiki
/index.php?title=Part_Section): Creates a section by intersecting an object
with a section plane

 (/wiki/index.php?title=File:Part_SectionCross.png) Cross sections...
(/wiki/index.php?title=Part_SectionCross):

 (/wiki/index.php?title=File:Part_Chamfer.png) Chamfer (/wiki
/index.php?title=Part_Chamfer): Chamfers edges of an object

 (/wiki/index.php?title=File:Part_Mirror.png) Mirror (/wiki
/index.php?title=Part_Mirror): Mirrors the selected object on a given
mirror plane

 (/wiki/index.php?title=File:Part_RuledSurface.png) Ruled Surface
(/wiki/index.php?title=Part_RuledSurface):

 (/wiki/index.php?title=File:Part_Sweep.png) Sweep (/wiki
/index.php?title=Part_Sweep): Sweeps one or more profiles along a path

 (/wiki/index.php?title=File:Part_Loft.png) Loft (/wiki
/index.php?title=Part_Loft): Lofts from one profile to another

 (/wiki/index.php?title=File:Part_Offset.png) Offset (/wiki
/index.php?title=Part_Offset): Creates a scaled copy of the original object.

 (/wiki/index.php?title=File:Part_Thickness.png) Thickness (/wiki
/index.php?title=Part_Thickness): Assign a thickness to the faces of a
shape.

Other tools

 (/wiki/index.php?title=File:Part_ImportCAD.png) Import CAD (/wiki
/index.php?title=Part_ImportCAD): This tool allows you to add a file *.IGES,
*.STEP, *.BREP to the current document.

 (/wiki/index.php?title=File:Part_ExportCAD.png) Export CAD (/wiki
/index.php?title=Part_ExportCAD): This tool allows you to export a part
object in a *.IGES, *.STEP, *.BREP file.

 (/wiki/index.php?title=File:Part_ShapeFromMesh.png) Shape from
Mesh (/wiki/index.php?title=Part_ShapeFromMesh): Creates a shape
object from a mesh object.
Convert to solid (/wiki/index.php?title=Part_ConvertToSolid): Converts a
shape object to a solid object.
Reverse shapes (/wiki/index.php?title=Part_ReverseShapes): Flips the
normals of all faces of the selected object.
Create simple copy (/wiki/index.php?title=Part_CreateSimpleCopy):
Creates a simple copy of the selected object.
Make compound (/wiki/index.php?title=Part_MakeCompound): Creates a
compound from the selected objects.

 (/wiki/index.php?title=File:Part_RefineShape.png) Refine shape (/wiki
/index.php?title=Part_RefineShape): Cleans faces by removing

Manual - FreeCAD Documentation

61 von 244

unnecessary lines.
 (/wiki/index.php?title=File:Part_CheckGeometry.png) Check geometry

(/wiki/index.php?title=Part_CheckGeometry): Checks the geometry of
selected objects for errors.
Measure (/wiki/index.php?title=Std_Measure_Menu): Allows linear and
angular measurement between points/edges/faces.

Boolean Operations

An example of union (Fuse), intersection (Common) and difference (Cut)

Explaining the concepts

In OpenCasCade terminology, we distinguish between geometric primitives and
(topological) shapes. A geometric primitive can be a point, a line, a circle, a
plane, etc. or even some more complex types like a B-Spline curve or surface. A
shape can be a vertex, an edge, a wire, a face, a solid or a compound of other
shapes. The geometric primitives are not made to be directly displayed on the
3D scene, but rather to be used as building geometry for shapes. For example,
an edge can be constructed from a line or from a portion of a circle.

We could say, to resume, that geometry primitive are "shapeless" building
blocks, and shapes are the real spatial geometry built on it.

To get a complete list of all of them refer to the OCC documentation
(http://www.opencascade.org/org/doc/) (Alternative: sourcearchive.com
(http://opencascade.sourcearchive.com/documentation/6.3.0.dfsg.1-1
/classes.html)) and search for Geom_* (for geometry) and TopoDS_* (for
shapes). There you can also read more about the differences between
geometric objects and shapes. Please note that unfortunately the official OCC
documentation is not available online (you must download an archive) and is
mostly aimed at programmers, not at end-users. But hopefully you'll find
enough information to get started here.

The geometric types actually can be divided into two major groups: curves and
surfaces. Out of the curves (line, circle, ...) you can directly build an edge, out
of the surfaces (plane, cylinder, ...) a face can be built. For example, the
geometric primitive line is unlimited, i.e. it is defined by a base vector and a

 (/wiki

/index.php?title=File:Part_BooleanOperations.png)

Manual - FreeCAD Documentation

62 von 244

direction vector while its shape representation must be something limited by a
start and end point. And a box -- a solid -- can be created by six limited
planes.

From an edge or face you can also go back to its geometric primitive counter
part.

Thus, out of shapes you can build very complex parts or, the other way round,
extract all sub-shapes a more complex shape is made of.

Scripting

The main data structure used in the Part module is the BRep
(http://en.wikipedia.org/wiki/Boundary_representation) data type from
OpenCascade. Almost all contents and object types of the Part module are now
available to python scripting. This includes geometric primitives, such as Line
and Circle (or Arc), and the whole range of TopoShapes, like Vertexes, Edges,
Wires, Faces, Solids and Compounds. For each of those objects, several
creation methods exist, and for some of them, especially the TopoShapes,
advanced operations like boolean union/difference/intersection are also
available. Explore the contents of the Part module, as described in the FreeCAD
Scripting Basics (/wiki/index.php?title=FreeCAD_Scripting_Basics) page, to
know more.

Examples

To create a line element switch to the Python console and type in:

import Part,PartGui

doc=App.newDocument()

l=Part.Line()

l.StartPoint=(0.0,0.0,0.0)

l.EndPoint=(1.0,1.0,1.0)

doc.addObject("Part::Feature","Line").Shape=l.toShape()

doc.recompute()

Let's go through the above python example step by step:

import Part,PartGui

doc=App.newDocument()

loads the Part module and creates a new document

l=Part.Line()

l.StartPoint=(0.0,0.0,0.0)

l.EndPoint=(1.0,1.0,1.0)

Line is actually a line segment, hence the start and endpoint.

doc.addObject("Part::Feature","Line").Shape=l.toShape()

This adds a Part object type to the document and assigns the shape
representation of the line segment to the 'Shape' property of the added object.
It is important to understand here that we used a geometric primitive (the
Part.Line) to create a TopoShape out of it (the toShape() method). Only Shapes
can be added to the document. In FreeCAD, geometry primitives are used as
"building structures" for Shapes.

doc.recompute()

Updates the document. This also prepares the visual representation of the new
part object.

Note that a Line can be created by specifying its start and endpoint directly in
the constructor, for example Part.Line(point1,point2), or we can create a

Manual - FreeCAD Documentation

63 von 244

< previous: OpenSCAD Module (/wiki
/index.php?title=OpenSCAD_Module)

next: Drawing Module > (/wiki/index.php?title=Drawing_Module)

default line and set its properties afterwards, as we did here.

A circle can be created in a similar way:

import Part

doc = App.activeDocument()

c = Part.Circle()

c.Radius=10.0

f = doc.addObject("Part::Feature", "Circle")

f.Shape = c.toShape()

doc.recompute()

Note again, we used the circle (geometry primitive) to construct a shape out of
it. We can of course still access our construction geometry afterwards, by
doing:

s = f.Shape

e = s.Edges[0]

c = e.Curve

Here we take the shape of our object f, then we take its list of edges. In this
case there will be only one because we made the whole shape out of a single
circle, so we take only the first item of the Edges list, and we takes its curve.
Every Edge has a Curve, which is the geometry primitive it is based on.

Head to the Topological data scripting (/wiki
/index.php?title=Topological_data_scripting) page if you would like to know
more.

Tutorials

Import from STL or OBJ (/wiki/index.php?title=Import_from_STL_or_OBJ) :
How to import STL/OBJ files in FreeCAD
Export to STL or OBJ (/wiki/index.php?title=Export_to_STL_or_OBJ) : How to
export STL/OBJ files from FreeCAD
Whiffle Ball tutorial (/wiki/index.php?title=Whiffle_Ball_tutorial) : How to
use the Part Module

Index (/wiki/index.php?title=Online_Help_Toc)

The Drawing workbench
The Drawing module allows you to put your 3D work on paper. That is, to put
views of your models in a 2D window and to insert that window in a drawing,
for example a sheet with a border, a title and your logo and finally print that
sheet. The Drawing module is currently under construction and more or less a
technology preview!

GUI Tools
These are tools for creating, configuring and exporting 2D drawing sheets

 (/wiki/index.php?title=File:Drawing_New.png) Open scalable vector
graphic (/wiki/index.php?title=Drawing_Open_SVG): Opens a drawing
sheet previously saved as an SVG file

Manual - FreeCAD Documentation

64 von 244

 (/wiki/index.php?title=File:Drawing_Landscape_A3.png) New A3
landscape drawing (/wiki/index.php?title=Drawing_Landscape_A3):
Creates a new drawing sheet from FreeCAD's default A3 template

 (/wiki/index.php?title=File:Drawing_View.png) Insert a view (/wiki
/index.php?title=Drawing_View): Inserts a view of the selected object in
the active drawing sheet

 (/wiki/index.php?title=File:Drawing_Annotation.png) Annotation (/wiki
/index.php?title=Drawing_Annotation): Adds an annotation to the current
drawing sheet

 (/wiki/index.php?title=File:Drawing_Clip.png) Clip (/wiki
/index.php?title=Drawing_Clip): Adds a clip group to the current drawing
sheet

 (/wiki/index.php?title=File:Drawing_Openbrowser.png) Open Browser
(/wiki/index.php?title=Drawing_Openbrowser): Opens a preview of the
current sheet in the browser

 (/wiki/index.php?title=File:Drawing_Orthoviews.png) Ortho Views
(/wiki/index.php?title=Drawing_Orthoviews): Automatically creates
orthographic views of an object on the current drawing sheet

 (/wiki/index.php?title=File:Drawing_Symbol.png) Symbol (/wiki
/index.php?title=Drawing_Symbol): Adds the contents of a SVG file as a
symbol on the current drawing sheet

 (/wiki/index.php?title=File:Drawing_DraftView.png) Draft View (/wiki
/index.php?title=Drawing_DraftView): Inserts a special Draft view of the
selected object in the current drawing sheet

 (/wiki/index.php?title=File:Drawing_SpreadsheetView.png)
Spreadsheet View (/wiki/index.php?title=Drawing_SpreadsheetView):
Inserts a view of a selected spreadsheet in the current drawing sheet

 (/wiki/index.php?title=File:Drawing_Save.png) Save sheet (/wiki
/index.php?title=Drawing_Save): Saves the current sheet as a SVG file
Project Shape (/wiki/index.php?title=Drawing_ProjectShape): Creates a
projection of the selected object (Source) in the 3D view.

Note The Draft View (/wiki/index.php?title=Draft_Drawing) tool is used mainly
to place Draft objects on paper. It has a couple of extra capabilities over the
standard Drawing tools, and supports specific objects like Draft dimensions
(/wiki/index.php?title=Draft_Dimension).

Manual - FreeCAD Documentation

65 von 244

(/wiki/index.php?title=File:Drawing_extraction.png)

In the picture you see the main concepts of the Drawing module. The
document contains a shape object (Schenkel) which we want to extract to a
drawing. Therefore a "Page" is created. A page gets instantiated through a
template, in this case the "A3_Landscape" template. The template is an SVG
document which can hold your usual page frame, your logo or comply to your
presentation standards.

In this page we can insert one or more views. Each view has a position on the
page (Properties X,Y), a scale factor (Property scale) and additional properties.
Every time the page or the view or the referenced object changes the page gets
regenerated and the page display updated.

Scripting
At the moment the end user(GUI) workflow is very limited, so the scripting API
is more interesting. Here follow examples on how to use the scripting API of
the drawing module.

Here a script that can easily fill the Macro_CartoucheFC (/wiki
/index.php?title=Macro_CartoucheFC) leaf FreeCAD A3_Landscape.

Simple example

First of all you need the Part and the Drawing module:

import FreeCAD, Part, Drawing

Create a small sample part

Part.show(Part.makeBox(100,100,100).cut(Part.makeCylinder(80,100)).cut(Part.makeBox(90,40

Direct projection. The G0 means hard edge, the G1 is tangent continuous.

Shape = App.ActiveDocument.Shape.Shape

[visibleG0,visibleG1,hiddenG0,hiddenG1] = Drawing.project(Shape)

print "visible edges:", len(visibleG0.Edges)

print "hidden edges:", len(hiddenG0.Edges)

Everything was projected on the Z-plane:

print "Bnd Box shape: X=",Shape.BoundBox.XLength," Y=",Shape.BoundBox.YLength," Z=",Shape

print "Bnd Box project: X=",visibleG0.BoundBox.XLength," Y=",visibleG0.BoundBox.YLength," Z="

Different projection vector

Manual - FreeCAD Documentation

66 von 244

[visibleG0,visibleG1,hiddenG0,hiddenG1] = Drawing.project(Shape,App.Vector(1,1,1))

Project to SVG

resultSVG = Drawing.projectToSVG(Shape,App.Vector(1,1,1))

print resultSVG

The parametric way

Create the body

import FreeCAD

import Part

import Drawing

Create three boxes and a cylinder

App.ActiveDocument.addObject("Part::Box","Box")

App.ActiveDocument.Box.Length=100.00

App.ActiveDocument.Box.Width=100.00

App.ActiveDocument.Box.Height=100.00

App.ActiveDocument.addObject("Part::Box","Box1")

App.ActiveDocument.Box1.Length=90.00

App.ActiveDocument.Box1.Width=40.00

App.ActiveDocument.Box1.Height=100.00

App.ActiveDocument.addObject("Part::Box","Box2")

App.ActiveDocument.Box2.Length=20.00

App.ActiveDocument.Box2.Width=85.00

App.ActiveDocument.Box2.Height=100.00

App.ActiveDocument.addObject("Part::Cylinder","Cylinder")

App.ActiveDocument.Cylinder.Radius=80.00

App.ActiveDocument.Cylinder.Height=100.00

App.ActiveDocument.Cylinder.Angle=360.00

Fuse two boxes and the cylinder

App.ActiveDocument.addObject("Part::Fuse","Fusion")

App.ActiveDocument.Fusion.Base = App.ActiveDocument.Cylinder

App.ActiveDocument.Fusion.Tool = App.ActiveDocument.Box1

App.ActiveDocument.addObject("Part::Fuse","Fusion1")

App.ActiveDocument.Fusion1.Base = App.ActiveDocument.Box2

App.ActiveDocument.Fusion1.Tool = App.ActiveDocument.Fusion

Cut the fused shapes from the first box

App.ActiveDocument.addObject("Part::Cut","Shape")

App.ActiveDocument.Shape.Base = App.ActiveDocument.Box

App.ActiveDocument.Shape.Tool = App.ActiveDocument.Fusion1

Hide all the intermediate shapes

Gui.ActiveDocument.Box.Visibility=False

Gui.ActiveDocument.Box1.Visibility=False

Gui.ActiveDocument.Box2.Visibility=False

Gui.ActiveDocument.Cylinder.Visibility=False

Gui.ActiveDocument.Fusion.Visibility=False

Gui.ActiveDocument.Fusion1.Visibility=False

Insert a Page object and assign a template

App.ActiveDocument.addObject('Drawing::FeaturePage','Page')

App.ActiveDocument.Page.Template = App.getResourceDir()+'Mod/Drawing/Templates/A3_Landscape.svg'

Create a view on the "Shape" object, define the position and scale and assign it
to a Page

App.ActiveDocument.addObject('Drawing::FeatureViewPart','View')

App.ActiveDocument.View.Source = App.ActiveDocument.Shape

App.ActiveDocument.View.Direction = (0.0,0.0,1.0)

App.ActiveDocument.View.X = 10.0

App.ActiveDocument.View.Y = 10.0

App.ActiveDocument.Page.addObject(App.ActiveDocument.View)

Create a second view on the same object but this time the view will be rotated

Manual - FreeCAD Documentation

67 von 244

by 90 degrees.

App.ActiveDocument.addObject('Drawing::FeatureViewPart','ViewRot')

App.ActiveDocument.ViewRot.Source = App.ActiveDocument.Shape

App.ActiveDocument.ViewRot.Direction = (0.0,0.0,1.0)

App.ActiveDocument.ViewRot.X = 290.0

App.ActiveDocument.ViewRot.Y = 30.0

App.ActiveDocument.ViewRot.Scale = 1.0

App.ActiveDocument.ViewRot.Rotation = 90.0

App.ActiveDocument.Page.addObject(App.ActiveDocument.ViewRot)

Create a third view on the same object but with an isometric view direction.
The hidden lines are activated too.

App.ActiveDocument.addObject('Drawing::FeatureViewPart','ViewIso')

App.ActiveDocument.ViewIso.Source = App.ActiveDocument.Shape

App.ActiveDocument.ViewIso.Direction = (1.0,1.0,1.0)

App.ActiveDocument.ViewIso.X = 335.0

App.ActiveDocument.ViewIso.Y = 140.0

App.ActiveDocument.ViewIso.ShowHiddenLines = True

App.ActiveDocument.Page.addObject(App.ActiveDocument.ViewIso)

Change something and update. The update process changes the view and the
page.

App.ActiveDocument.View.X = 30.0

App.ActiveDocument.View.Y = 30.0

App.ActiveDocument.View.Scale = 1.5

App.ActiveDocument.recompute()

Accessing the bits and pieces

Get the SVG fragment of a single view

ViewSVG = App.ActiveDocument.View.ViewResult

print ViewSVG

Get the whole result page (it's a file in the document's temporary directory,
only read permission)

print "Resulting SVG document: ",App.ActiveDocument.Page.PageResult

file = open(App.ActiveDocument.Page.PageResult,"r")

print "Result page is ",len(file.readlines())," lines long"

Important: free the file!

del file

Insert a view with your own content:

App.ActiveDocument.addObject('Drawing::FeatureView','ViewSelf')

App.ActiveDocument.ViewSelf.ViewResult = """<g id="ViewSelf"

 stroke="rgb(0, 0, 0)"

 stroke-width="0.35"

 stroke-linecap="butt"

 stroke-linejoin="miter"

 transform="translate(30,30)"

 fill="#00cc00"

>

<ellipse cx="40" cy="40" rx="30" ry="15"/>

</g>"""

App.ActiveDocument.Page.addObject(App.ActiveDocument.ViewSelf)

App.ActiveDocument.recompute()

del ViewSVG

That leads to the following result:

Manual - FreeCAD Documentation

68 von 244

(/wiki/index.php?title=File:DrawingScriptResult.jpg)

General Dimensioning and Tolerancing

Drawing dimensions an tolerances are still under development but you can get
some basic functionality with a bit of work.

First you need to get the gdtsvg python module from here (WARNING: This
could be broken at any time!):

https://github.com/jcc242/FreeCAD (https://github.com/jcc242/FreeCAD)

To get a feature control frame, try out the following:

import gdtsvg as g # Import the module, I like to give it an easy handle

ourFrame = g.ControlFrame("0","0", g.Perpendicularity(), ".5", g.Diameter(), g.ModifyingSymbols

 g.ModifyingSymbols("F"), "B", g.ModifyingSymbols("L"), "C", g.ModifyingSymbols

Here is a good breakdown of the contents of a feature control frame:
http://www.cadblog.net/adding-geometric-tolerances.htm
(http://www.cadblog.net/adding-geometric-tolerances.htm)

The parameters to pass to control frame are:

X-coordinate in SVG-coordinate system (type string)�.
Y-coordinate in SVG-coordinate system (type string)�.
The desired geometric characteristic symbol (tuple, svg string as
first, width of symbol as second, height of symbol as third)

�.

The tolerance (type string)�.
(optional) The diameter symbol (tuple, svg string as first, width
of symbol as second, height of symbol as third)

�.

(optional) The condition modifying material (tuple, svg string as
first, width of symbol as second, height of symbol as third)

�.

(optional) The first datum (type string)�.
(optional) The first datum's modifying condition (tuple, svg string
as first, width of symbol as second, height of symbol as third)

�.

Manual - FreeCAD Documentation

69 von 244

(optional) The second datum (type string)�.
(optional) The second datum's modifying condition (tuple, svg
string as first, width of symbol as second, height of symbol as
third)

��.

(optional) The third datum (type string)��.
(optional) The third datum's material condition (tuple, svg string
as first, width of symbol as second, height of symbol as third)

��.

The ControlFrame function returns a type containing (svg string, overall width
of control frame, overall height of control frame)

To get a dimension, try out the following:

import gdtsvg

ourDimension = linearDimension(point1, point2, textpoint, dimensiontext, linestyle=getStyle

 arrowstyle=getStyle("filled"), textstyle=getStyle("text")

Inputs for linear dimension are:

point1, an (x,y) tuple with svg-coordinates, this is one of the
points you would like to dimension between

�.

point2, an (x,y) tuple with svg-coordinates, this is the second
point you would like to dimension between

�.

textpoint, an (x,y) tuple of svg-coordinates, this is where the text
of your dimension will be

�.

dimensiontext, a string containing the text you want the
dimension to say

�.

linestyle, a string containing svg (i.e. css) styles, using the
getStyle function to retrieve a preset string, for styling the how
the lines look

�.

arrowstyle, a string containing svg (i.e. css) styles, using the
getStyle function to retrieve a preset string, for styling how the
arrows look

�.

textstyle, a string containing svg (i.e. css) styles, using the
getStyle function to retrieve a preset string, for styling how the
text looks

�.

With those two, you can proceed as above for displaying them on the drawing
page. This module is very buggy and can be broken at any given moment, bug
reports are welcome on the github page for now, or contact jcc242 on the
forums if you post a bug somewhere else.

Templates
FreeCAD comes bundled with a set of default templates, but you can find more
on the Drawing templates (/wiki/index.php?title=Drawing_templates) page.

Manual - FreeCAD Documentation

70 von 244

< previous: Part Module (/wiki/index.php?title=Part_Module)
next: Raytracing Module > (/wiki
/index.php?title=Raytracing_Module)

Extending the Drawing Module
Some notes on the programming side of the drawing module will be added to
the Drawing Documentation (/wiki/index.php?title=Drawing_Documentation)
page. This is to help quickly understand how the drawing module works,
enabling programmers to rapidly start programming for it.

Tutorials
Drawing tutorial (/wiki/index.php?title=Drawing_tutorial)

External links
Intro to mechanical drawing on Youtube - by Normal Universe
(https://www.youtube.com/watch?v=1Hm5Zyjmjac)

Index

(/wiki/index.php?title=Online_Help_Toc)

The Raytracing workbench
The Raytracing module is used to generate photorealistic images of your
models by rendering them with an external renderer. The Raytracing
workbench works with templates (/wiki
/index.php?title=Raytracing_Module#Templates), the same way as the Drawing
workbench (/wiki/index.php?title=Drawing_Module), by allowing you to create
a Raytracing project in which you add views of your objects. The project can
then be exported to a ready-to-render file, or be rendered directly.

(/wiki/index.php?title=File:Raytracing_example.jpg)

Currenly, two renderers are supported: povray (http://en.wikipedia.org
/wiki/POV-Ray) and luxrender (http://en.wikipedia.org/wiki/LuxRender). To be
able to render directly from FreeCAD, at least one of those renderers must be

Manual - FreeCAD Documentation

71 von 244

installed on your system, and its path must be configured in the FreeCAD
Raytracing preferences. Without any renderer installed, though, you are still
able to export a scene file that can be used in any of those renderers later, or
on another machine.

The raytracing workbench works with templates (/wiki
/index.php?title=Raytracing_Module#Templates), which are complete scene
files for the given external renderer, including lights and possibly additional
geometry such as ground planes. These scene files contain placeholders,
where FreeCAD will insert the position of the camera, and geometry and
materials information of each of the objects you insert in the project. That
modified scene file is what is then exported to the external renderer.

Tools

Raytracing project tools

These are the main tools for exporting your 3D work to external renderers

 (/wiki/index.php?title=File:Raytracing_New.png) New PovRay project
(/wiki/index.php?title=Raytracing_New): Insert new PovRay project in the
document

 (/wiki/index.php?title=File:Raytracing_Lux.png) New LuxRender
project (/wiki/index.php?title=Raytracing_Lux): Insert new LuxRender
project in the document

 (/wiki/index.php?title=File:Raytracing_InsertPart.png) Insert part
(/wiki/index.php?title=Raytracing_InsertPart): Insert a view of a Part in a
raytracing project

 (/wiki/index.php?title=File:Raytracing_ResetCamera.png) Reset
camera (/wiki/index.php?title=Raytracing_ResetCamera): Matches the
camera position of a raytracing project to the current view

 (/wiki/index.php?title=File:Raytracing_ExportProject.png) Export
project (/wiki/index.php?title=Raytracing_ExportProject): Exports a
raytracing project to a scene file for rendering in an external renderer

 (/wiki/index.php?title=File:Raytracing_Render.png) Render (/wiki
/index.php?title=Raytracing_Render): Renders a raytracing project with an
external renderer

Utilities

These are helper tools to perform specific tasks manually

 (/wiki/index.php?title=File:Raytracing_Export.png) Export view to
povray (/wiki/index.php?title=Raytracing_Export): Write the active 3D view
with camera and all its content to a povray file

 (/wiki/index.php?title=File:Raytracing_Camera.png) Export camera to
povray (/wiki/index.php?title=Raytracing_Camera): Export the camera
position of the active 3D view in POV-Ray format to a file

 (/wiki/index.php?title=File:Raytracing_Part.png) Export part to povray
(/wiki/index.php?title=Raytracing_Part): Write the selected Part (object) as
a povray file

Manual - FreeCAD Documentation

72 von 244

Typical workflow

Create or open a FreeCAD project, add some Part-based (/wiki
/index.php?title=Part_Module) objects (meshes are currently not
supported)

�.

Create a Raytracing project (luxrender or povray)�.
Select the objects you wish to add to the raytracing project and
add them to the project with the "Insert Part" tool

�.

Export or render directly�.

Creating a povray file manually
The utility tools described above allow you to export the current 3D view and
all of its content to a Povray (http://www.povray.org/) file. First, you must load
or create your CAD data and position the 3D View orientation as you wish. Then
choose "Utilities->Export View..." from the raytracing menu.

(/wiki/index.php?title=File:FreeCAD_Raytracing.jpg)
You will be asked for a location to save the resulting *.pov file. After that you
can open it in Povray (http://www.povray.org/) and render:

Manual - FreeCAD Documentation

73 von 244

(/wiki/index.php?title=File:Povray.jpg)
As usual in a renderer you can make big and nice pictures:

(/wiki/index.php?title=File:Scharniergreifer_render.jpg)

Manual - FreeCAD Documentation

74 von 244

Scripting

Outputting render files

The Raytracing and RaytracingGui modules provide several methods to write
scene contents as povray or luxrender data. The most useful are
Raytracing.getPartAsPovray() and Raytracing.getPartAsLux() to render a
FreeCAD Part object into a povray or luxrender definition, and
RaytracingGui.povViewCamera() and RaytracinGui.luxViewCamera() to get the
current point of view of the FreeCAD 3D window into povray or luxrender
format.

Here is how to write a povray file from python, assuming your document
contains a "Box" object:

import Raytracing,RaytracingGui

OutFile = open('C:/Documents and Settings/jriegel/Desktop/test.pov','w')

OutFile.write(open(App.getResourceDir()+'Mod/Raytracing/Templates/ProjectStd.pov').read())

OutFile.write(RaytracingGui.povViewCamera())

OutFile.write(Raytracing.getPartAsPovray('Box',App.activeDocument().Box.Shape,0.800000,0.800000

OutFile.close()

del OutFile

And the same for luxrender:

import Raytracing,RaytracingGui

OutFile = open('C:/Documents and Settings/jriegel/Desktop/test.lxs','w')

OutFile.write(open(App.getResourceDir()+'Mod/Raytracing/Templates/LuxClassic.lxs').read())

OutFile.write(RaytracingGui.luxViewCamera())

OutFile.write(Raytracing.getPartAsLux('Box',App.activeDocument().Box.Shape,0.800000,0.800000

OutFile.close()

del OutFile

Creating a custom render object

Apart from standard povray and luxrender view objects that provide a view of
an existing Part object, and that can be inserted in povray and luxrender
projects respectively, a third object exist, called RaySegment, that can be
inserted either in povray or luxrender projects. That RaySegment object is not
linked to any of the FreeCAD objects, and can contain custom povray or
luxrender code, that you might wish to insert into your raytracing project. You
can also use it, for example, to output your FreeCAD objects a certain way, if
you are not happy with the standard way. You can create and use it like this
from the python console:

myRaytracingProject = FreeCAD.ActiveDocument.PovProject

myCustomRenderObject = FreeCAD.ActiveDocument.addObject("Raytracing::RaySegment","myRenderObject"

myRaytracingProject.addObject(myCustomRenderObject)

myCustomRenderObject.Result = "// Hello from python!"

Links

POVRay

http://www.spiritone.com/~english/cyclopedia/
(http://www.spiritone.com/~english/cyclopedia/)
http://www.povray.org/ (http://www.povray.org/)
http://en.wikipedia.org/wiki/POV-Ray (http://en.wikipedia.org
/wiki/POV-Ray)

Luxrender

Manual - FreeCAD Documentation

75 von 244

http://www.luxrender.net/ (http://www.luxrender.net/)

Future possible renderers to implement

http://www.yafaray.org/ (http://www.yafaray.org/)
http://www.mitsuba-renderer.org/ (http://www.mitsuba-renderer.org/)
http://www.kerkythea.net/ (http://www.kerkythea.net/)
http://www.artofillusion.org/ (http://www.artofillusion.org/)

Currently there is a new Renderer Workbench in development to support
multiple back-ends such as Lux Renderer and Yafaray. Information for using
the development version can be viewed at Render_project (/wiki
/index.php?title=Render_project)

For Development status of the Render Module look here Raytracing_project
(/wiki/index.php?title=Raytracing_project)

Templates
FreeCAD comes with a couple of default templates for povray and luxrender,
but you can easily create your own. All you need to do is to create a scene file
for the given renderer, then edit it manually with a text editor to insert special
tags that FreeCAD will recognize and where it will insert its contents (camera
and objects data)

Povray

Povray scene files (with extension .pov) can be created manually with a text
editor (povray is made primarily to be used as a scripting language), but also
with a wide range of 3D applications, such as blender
(http://www.blender.org). On the povray website (http://www.povray.org/) you
can find further information and a list of applications able to produce .pov
files.

When you have a .pov file ready, you need to open it with a text editor, and do
two operations:

Strip out the camera information, because FreeCAD will place its
own camera data. To do so, locate a text block like this: camera
{ ... }, which describes the camera parameters, and delete it
(or put "//" in front of each line to comment them out).

�.

Insert the following line somewhere: //RaytracingContent.
This is where FreeCAD will insert its contents (camera and
objects data). You can, for example, put this line at the very end
of the file.

�.

Note that FreeCAD will also add some declarations, that you can use in your
template, after the //RaytracingContent tag. These are:

cam_location: the location of the camera
cam_look_at: the location of the target point of the camera
cam_sky: the up vector of the camera.
cam_angle: the angle of the camera

Manual - FreeCAD Documentation

76 von 244

If you want, for example, to place a lamp above the camera, you can use this:

light_source {

 cam_location + cam_angle * 100

 color rgb <10, 10, 10>

}

Luxrender

Luxrender scene files (with extension.lxs) can either be single files, or a master
.lxs file that includes world definition (.lxw), material definition (.lxm) and
geometry definition (.lxo) files. You can work with both styles, but it is also easy
to transform a group of 4 files in a single .lxs file, by copying the contents of
each .lxw, .lxm and .lxo file and pasting it at the point where that file is
inserted in the master .lxs file.

Luxrender scene files are hard to produce by hand, but are easy to produce
with many 3D applications such as blender (http://www.blender.org). On the
luxrender website (http://www.luxrender.net), you'll find more information and
plugins for the main 3D applications out there.

If you will work with separated .lxw, .lxm and .lxo files, beware that the final .lxs
exported by FreeCAD might be at a different location than the template file,
and therefore these files might not be found by Luxrender at render time. In
this case you should or copy these files to the location of your final file, or edit
their paths in the exported .lxs file.

If you are exporting a scene file from blender, and wish to merge everything
into one single file, you will need to perform one step before exporting: By
default, the luxrender exporter in blender exports all mesh geometry as
separate .ply files, instead of placing the mesh geometry directly inside the .lxo
file. To change that behaviour, you need to select each of your meshes in
blender, go to the "mesh" tab and set the option "export as" to "luxrender
mesh" for each one of them.

After you have your scene file ready, to turn it into a FreeCAD template, you
need to perform the following steps:

Locate the camera position, a single line that begins with
LookAt, and delete it (or place a "#" at the beginning of the line
to comment it out)

�.

At that place, insert the following line: #RaytracingCamera�.
At a desired point, for example just after the end of the
materials definition, before the geometry information, or at the
very end, just before the final WorldEnd line, insert the
following line: #RaytracingContent. That is where FreeCAD
will insert its own objects.

�.

Note that in luxrender, the objects stored in a scene file can define
transformation matrixes, that perform location, rotation or scaling operations.
These matrixes can stack and affect everything that come after them, so, by
placing your #RaytracingContent tag at the end of the file, you might see
your FreeCAD objects affected by a transformation matrix placed earlier in the
template. To make sure that this doesn't happen, place your
#RaytracingContent tag before any other geometry object present in the
template. FreeCAD itself won't define any of those transformation matrixes.

Manual - FreeCAD Documentation

77 von 244

< previous: Drawing Module (/wiki/index.php?title=Drawing_Module)
next: Image Module > (/wiki/index.php?title=Image_Module)

Exporting to Kerkythea
Although direct export to the Kerkythea XML-File-Format is not supported yet,
you can export your Objects as Mesh-Files (.obj) and then import them in
Kerkythea.

if using Kerkythea for Linux, remember to install the WINE-Package
(needed by Kerkythea for Linux to run)
you can convert your models with the help of the mesh workbench to
meshes and then export these meshes as .obj-files
If your mesh-export resulted in errors (flip of normals, holes ...) you may
try your luck with netfabb studio basic (http://www.netfabb.com
/downloadcenter.php?basic=1)

Free for personal use, available for Windows, Linux and Mac OSX.
It has standard repair tools which will repair you model in most
cases.

another good program for mesh analysing/repairing is Meshlab
(http://sourceforge.net/projects/meshlab/)

Open Source, available for Windows, Linux and Mac OSX.
It has standard repair tools which will repair you model in most
cases (fill holes, re-orient normals, etc.)

you can use "make compound" and then "make single copy" or you can
fuse solids to group them before converting to meshes
remember to set in Kerkythea an import-factor of 0.001 for obj-modeler,
since Kerkythea expects the obj-file to be in m (but standard units-scheme
in FreeCAD is mm)

Within WIndows 7 64-bit Kerkythea does not seem to be able to save
these settings.
So remember to do that each time you start Kerkythea

if importing multiple objects in Kerkythea you can use the "File > Merge"
command in Kerkythea

Links
Render project (/wiki/index.php?title=Render_project)
Raytracing tutorial (/wiki/index.php?title=Raytracing_tutorial)

Index
(/wiki/index.php?title=Online_Help_Toc)

The Image workbench
The image module manages different types of bitmap images

Manual - FreeCAD Documentation

78 von 244

< previous: Raytracing Module (/wiki
/index.php?title=Raytracing_Module)

next: Draft Module > (/wiki/index.php?title=Draft_Module)

(http://en.wikipedia.org/wiki/Raster_graphics), and lets you open them in
FreeCAD.

Currently, the modules lets you open .bmp, .jpg, .png and .xpm file formats in a
separate viewer window.

The image workbenches also allows you to import an image on a plane in the
3D-space of FreeCAD. This function is available via the second button of the
image workbench. (/wiki/index.php?title=File:Image_Import.png).
The imported image can be attached like a sketch to one of the main three
planes (XY/XZ/YZ) with positive or negativ offset.
This function is only available if you have opened a FreeCAD document.

The image can be moved in 3D-space by editing the placement in the Property
editor (/wiki/index.php?title=Property_editor).
The major use is tracing over the image, in order to generate a new part at
using the image as template.

The image is imported with 1 pixel = 1mm. Therefore it is recommended to have
the imported image in a reasonable resolution. The image can be scaled by
editing the "XSize" and "YSize" values in the Property editor (/wiki
/index.php?title=Property_editor). The image can be also moved by editing the
X/Y/Z-values in the Placement-Tab. The image can also be rotated around any
axis by using the placement-dialogue.

Tip:
Tracing with sketcher elements over an image works best if the image has a
small (negative) offset to the sketch plane.
You can set an offset of -0,1 mm at import or later by editing the placement of
the image.

Tools

 (/wiki/index.php?title=File:Image_Import.png) Image Import (/wiki
/index.php?title=Image_Import)

Index
(/wiki/index.php?title=Online_Help_Toc)

The Draft workbench
The Draft workbench allows to quickly draw simple 2D objects in the current
document, and offers several tools to modify them afterwards. Some of these
tools also work on all other FreeCAD objects, not only those created with the
Draft workbench. It also provides a complete snapping system, and several
utilities to manage objects and settings.

Drawing objects

These are tools for creating objects.

 (/wiki/index.php?title=File:Draft_Line.png) Line (/wiki
/index.php?title=Draft_Line): Draws a line segment between 2 points

 (/wiki/index.php?title=File:Draft_Wire.png) Wire (/wiki

Manual - FreeCAD Documentation

79 von 244

/index.php?title=Draft_Wire): Draws a line made of multiple line segments
(polyline)

 (/wiki/index.php?title=File:Draft_Circle.png) Circle (/wiki
/index.php?title=Draft_Circle): Draws a circle from center and radius

 (/wiki/index.php?title=File:Draft_Arc.png) Arc (/wiki
/index.php?title=Draft_Arc): Draws an arc segment from center, radius,
start angle and end angle

 (/wiki/index.php?title=File:Draft_Ellipse.png) Ellipse (/wiki
/index.php?title=Draft_Ellipse): Draws an ellipse from two corner points

 (/wiki/index.php?title=File:Draft_Polygon.png) Polygon (/wiki
/index.php?title=Draft_Polygon): Draws a regular polygon from a center
and a radius

 (/wiki/index.php?title=File:Draft_Rectangle.png) Rectangle (/wiki
/index.php?title=Draft_Rectangle): Draws a rectangle from 2 opposite
points

 (/wiki/index.php?title=File:Draft_Text.png) Text (/wiki
/index.php?title=Draft_Text): Draws a multi-line text annotation

 (/wiki/index.php?title=File:Draft_Dimension.png) Dimension (/wiki
/index.php?title=Draft_Dimension): Draws a dimension annotation

 (/wiki/index.php?title=File:Draft_BSpline.png) BSpline (/wiki
/index.php?title=Draft_BSpline): Draws a B-Spline from a series of points

 (/wiki/index.php?title=File:Draft_Point.png) Point (/wiki
/index.php?title=Draft_Point): Inserts a point object

 (/wiki/index.php?title=File:Draft_ShapeString.png) ShapeString (/wiki
/index.php?title=Draft_ShapeString): The ShapeString tool inserts a
compound shape representing a text string at a given point in the current
document

 (/wiki/index.php?title=File:Draft_Facebinder.png) Facebinder (/wiki
/index.php?title=Draft_Facebinder): Creates a new object from selected
faces on existing objects

 (/wiki/index.php?title=File:Draft_BezCurve.png) Bezier Curve (/wiki
/index.php?title=Draft_BezCurve): Draws a Bezier curve from a series of
points

Modifying objects

These are tools for modifying existing objects. They work on selected objects,
but if no object is selected, you will be invited to select one.

 (/wiki/index.php?title=File:Draft_Move.png) Move (/wiki
/index.php?title=Draft_Move): Moves object(s) from one location to
another

 (/wiki/index.php?title=File:Draft_Rotate.png) Rotate (/wiki
/index.php?title=Draft_Rotate): Rotates object(s) from a start angle to an
end angle

 (/wiki/index.php?title=File:Draft_Offset.png) Offset (/wiki
/index.php?title=Draft_Offset): Moves segments of an object about a

Manual - FreeCAD Documentation

80 von 244

certain distance
 (/wiki/index.php?title=File:Draft_Trimex.png) Trim/Extend (Trimex)

(/wiki/index.php?title=Draft_Trimex): Trims or extends an object
 (/wiki/index.php?title=File:Draft_Upgrade.png) Upgrade (/wiki

/index.php?title=Draft_Upgrade): Joins objects into a higher-level object
 (/wiki/index.php?title=File:Draft_Downgrade.png) Downgrade (/wiki

/index.php?title=Draft_Downgrade): Explodes objects into lower-level
objects

 (/wiki/index.php?title=File:Draft_Scale.png) Scale (/wiki
/index.php?title=Draft_Scale): Scales selected object(s) around a base
point

 (/wiki/index.php?title=File:Draft_PutOnSheet.png) Drawing (/wiki
/index.php?title=Draft_Drawing): Writes selected objects to a Drawing
sheet (/wiki/index.php?title=Drawing_Module)

 (/wiki/index.php?title=File:Draft_Edit.png) Edit (/wiki
/index.php?title=Draft_Edit): Edits a selected object

 (/wiki/index.php?title=File:Draft_WireToBSpline.png) Wire to BSpline
(/wiki/index.php?title=Draft_WireToBSpline): Converts a wire to a BSpline
and vice-versa

 (/wiki/index.php?title=File:Draft_AddPoint.png) Add point (/wiki
/index.php?title=Draft_AddPoint): Adds a point to a wire or BSpline

 (/wiki/index.php?title=File:Draft_DelPoint.png) Delete point (/wiki
/index.php?title=Draft_DelPoint): Deletes a point from a wire or BSpline

 (/wiki/index.php?title=File:Draft_Shape2DView.png) Shape 2D View
(/wiki/index.php?title=Draft_Shape2DView): Creates a 2D object which is a
flattened 2D view of another 3D object

 (/wiki/index.php?title=File:Draft_Draft2Sketch.png) Draft to Sketch
(/wiki/index.php?title=Draft_Draft2Sketch): Converts a Draft object to
Sketch and vice-versa

 (/wiki/index.php?title=File:Draft_Array.png) Array (/wiki
/index.php?title=Draft_Array): Creates a polar or rectangular array from
selected objects

 (/wiki/index.php?title=File:Draft_PathArray.png) Path Array (/wiki
/index.php?title=Draft_PathArray): Creates an array of objects by placing
the copies along a path

 (/wiki/index.php?title=File:Draft_Clone.png) Clone (/wiki
/index.php?title=Draft_Clone): Clones the selected objects

 (/wiki/index.php?title=File:Draft_Mirror.png) Mirror (/wiki
/index.php?title=Draft_Mirror): Mirrors the selected objects

 (/wiki/index.php?title=File:Draft_Stretch.png) Stretch (/wiki
/index.php?title=Draft_Stretch): Stretches the selected objects

Utility tools

Additional tools available via right-click context menu, depending on the
selected objects.

Manual - FreeCAD Documentation

81 von 244

 (/wiki/index.php?title=File:Draft_SelectPlane.png) Set working plane
(/wiki/index.php?title=Draft_SelectPlane): Sets a working plane from a
standard view or a selected face

 (/wiki/index.php?title=File:Draft_FinishLine.png) Finish line (/wiki
/index.php?title=Draft_FinishLine): Ends the drawing of the current wire or
bspline, without closing it

 (/wiki/index.php?title=File:Draft_CloseLine.png) Close line (/wiki
/index.php?title=Draft_CloseLine): Ends the drawing of the current wire or
bspline, and closes it

 (/wiki/index.php?title=File:Draft_UndoLine.png) Undo line (/wiki
/index.php?title=Draft_UndoLine): Undoes the last segment of a line

 (/wiki/index.php?title=File:Draft_ToggleConstructionMode.png) Toggle
construction mode (/wiki/index.php?title=Draft_ToggleConstructionMode):
Toggles the Draft construction mode on/off

 (/wiki/index.php?title=File:Draft_ToggleContinueMode.png) Toggle
continue mode (/wiki/index.php?title=Draft_ToggleContinueMode): Toggles
the Draft continue mode on/off

 (/wiki/index.php?title=File:Draft_ApplyStyle.png) Apply style (/wiki
/index.php?title=Draft_Apply): Applies the current style and color to
selected objects

 (/wiki/index.php?title=File:Draft_ToggleDisplayMode.png) Toggle
display mode (/wiki/index.php?title=Draft_ToggleDisplayMode): Switches
the display mode of selected objects between "flat lines" and "wireframe"

 (/wiki/index.php?title=File:Draft_AddToGroup.png) Add to group (/wiki
/index.php?title=Draft_AddToGroup): Quickly adds selected objects to an
existing group

 (/wiki/index.php?title=File:Draft_SelectGroup.png) Select group
contents (/wiki/index.php?title=Draft_SelectGroup): Selects the contents
of a selected group

 (/wiki/index.php?title=File:Draft_ToggleSnap.png) Toggle snap (/wiki
/index.php?title=Draft_ToggleSnap): Toggles object snapping (/wiki
/index.php?title=Draft_Snap) on/off

 (/wiki/index.php?title=File:Draft_ToggleGrid.png) Toggle grid (/wiki
/index.php?title=Draft_ToggleGrid): Toggles the grid on/off

 (/wiki/index.php?title=File:Draft_ShowSnapBar.png) Show snap bar
(/wiki/index.php?title=Draft_ShowSnapBar): Shows/hides the snapping
(/wiki/index.php?title=Draft_Snap) toolbar

 (/wiki/index.php?title=File:Draft_Heal.png) Heal (/wiki
/index.php?title=Draft_Heal): Heals problematic Draft objects found in
very old files

 (/wiki/index.php?title=File:Draft_FlipDimension.png) Flip Dimension
(/wiki/index.php?title=Draft_FlipDimension): Flips the orientation of the
text of a dimension (/wiki/index.php?title=Draft_Dimension)

 (/wiki/index.php?title=File:Draft_VisGroup.png) VisGroup (/wiki
/index.php?title=Draft_VisGroup): Creates a VisGroup in the current

Manual - FreeCAD Documentation

82 von 244

document
 (/wiki/index.php?title=File:Draft_Slope.png) Slope (/wiki

/index.php?title=Draft_Slope): Changes the slope of selected Lines or
Wires available in version 0.17 (/wiki/index.php?title=Release_notes_0.17)

File formats

The Draft module provides FreeCAD with importers and exporters for the
following file formats:

Autodesk .DXF (/wiki/index.php?title=Draft_DXF): Imports and exports
Drawing Exchange Format (http://en.wikipedia.org/wiki/AutoCAD_DXF) files
created with 2D CAD applications
SVG (as geometry) (/wiki/index.php?title=Draft_SVG): Imports and exports
Scalable Vector Graphics (http://en.wikipedia.org
/wiki/Scalable_Vector_Graphics) files created with vector drawing
applications
Open Cad format .OCA (/wiki/index.php?title=Draft_OCA): Imports and
exports OCA/GCAD files, a potentially new open CAD file format
(http://groups.google.com/group/open_cad_format)
Airfoil Data Format .DAT (/wiki/index.php?title=Draft_DAT): Imports DAT
files describing Airfoil profiles (http://www.ae.illinois.edu/m-selig
/ads/coord_database.html)
Autodesk .DWG (/wiki/index.php?title=Draft_DXF): Import and exports DWG
files via the DXF importer, when the Teigha Converter (/wiki
/index.php?title=Extra_python_modules) utility is installed.
FreeCAD and DWG Import (/wiki
/index.php?title=FreeCAD_and_DWG_Import): Import and exports DWG
files
FreeCAD and DXF Import (/wiki/index.php?title=FreeCAD_and_DXF_Import):
Import and exports DXf files

Additional features

Snapping (/wiki/index.php?title=Draft_Snap): Allows to place new points
on special places on existing objects
Constraining (/wiki/index.php?title=Draft_Constrain): Allows to place new
points horizontally or vertically in relation to previous points
Working with manual coordinates (/wiki
/index.php?title=Draft_Coordinates): Allows to enter manual coordinates
instead of clicking on screen
Working plane (/wiki/index.php?title=Draft_SelectPlane): Allows you to
define a plane in the 3D space, where next operations will take place

Preference settings

The Draft module has its preferences (/wiki
/index.php?title=Draft_Preferences) screen

Scripting

Manual - FreeCAD Documentation

83 von 244

< previous: Image Module (/wiki/index.php?title=Image_Module)
next: Arch Module > (/wiki/index.php?title=Arch_Module)

The Draft module features a complete Draft API (http://www.freecadweb.org
/api/Draft.html) so you can use its functions in scripts and macros

Tutorials

Draft tutorial (/wiki/index.php?title=Draft_tutorial)
Draft tutorial Outdated (/wiki/index.php?title=Draft_tutorial_Outdated)
Draft ShapeString tutorial (/wiki
/index.php?title=Draft_ShapeString_tutorial)

Index (/wiki
/index.php?title=Online_Help_Toc)

Scripting and Macros
Macros
Macros are a convenient way to create complex actions in FreeCAD. You simply
record actions as you do them, then save that under a name, and replay them
whenever you want. Since macros are in reality a list of python commands, you
can also edit them, and create very complex scripts.

How it works

If you enable console output (Menu Edit -> Preferences -> General -> Macros ->
Show scripts commands in python console), you will see that in FreeCAD, every
action you do, such as pressing a button, outputs a python command. Thos
commands are what can be recorded in a macro. The main tool for making
macros is the macros toolbar: (/wiki
/index.php?title=File:Macros_toolbar.jpg). On it you have 4 buttons: Record,
stop recording, edit and play the current macro.

It is very simple to use: Press the record button, you will be asked to give a
name to your macro, then perform some actions. When you are done, click the
stop recording button, and your actions will be saved. You can now access the
macro dialog with the edit button:

 (/wiki

/index.php?title=File:Macros.jpg)

Manual - FreeCAD Documentation

84 von 244

There you can manage your macros, delete, edit or create new ones from
scratch. If you edit a macro, it will be opened in an editor window where you
can make changes to its code.

Example

Press the record button, give a name, let's say "cylinder 10x10", then, in the
Part Workbench (/wiki/index.php?title=Part_Workbench), create a cylinder with
radius = 10 and height = 10. Then, press the "stop recording" button. In the edit
macros dialog, you can see the python code that has been recorded, and, if
you want, make alterations to it. To execute your macro, simply press the
execute button on the toolbar while your macro is in the editor. You macro is
always saved to disk, so any change you make, or any new macro you create,
will always be available next time you start FreeCAD.

Customizing

Of course it is not practical to load a macro in the editor in order to use it.
FreeCAD provides much better ways to use your macro, such as assigning a
keyboard shortcut to it or putting an entry in the menu. Once your macro is
created, all this can be done via the Tools -> Customize menu:

 (/wiki

/index.php?title=File:Macros_config.jpg)

Customize Toolbars (/wiki/index.php?title=Customize_Toolbars) This way you
can make your macro become a real tool, just like any standard FreeCAD tool.
This, added to the power of python scripting within FreeCAD, makes it possible
to easily add your own tools to the interface. Read on to the Scripting (/wiki
/index.php?title=Scripting) page if you want to know more about python
scripting...

Creating macros without recording

How to install macros (/wiki/index.php?title=How_to_install_macros) You can
also directly copy/paste python code into a macro, without recording GUI
action. Simply create a new macro, edit it, and paste your code. You can then
save your macro the same way as you save a FreeCAD document. Next time you
start FreeCAD, the macro will appear under the "Installed Macros" item of the
Macro menu.

Macros repository

Visit the Macros recipes (/wiki/index.php?title=Macros_recipes) page to pick
some useful macros to add to your FreeCAD installation.

Links

Installing more workbenches (/wiki
/index.php?title=Installing_more_workbenches)

Manual - FreeCAD Documentation

85 von 244

< previous: Standard Menu (/wiki/index.php?title=Standard_Menu)
next: Introduction to Python > (/wiki
/index.php?title=Introduction_to_Python)

Tutorials

How to install additional workbenches (/wiki
/index.php?title=How_to_install_additional_workbenches)

Index (/wiki/index.php?title=Online_Help_Toc)

Introduction to Python
<translate> This is a short tutorial made for who is totally new to Python.
Python (http://en.wikipedia.org/wiki/Python_%28programming_language%29)
is an open-source, multiplatform programming language
(http://en.wikipedia.org/wiki/Programming_language). Python has several
features that make it very different than other common programming
languages, and very accessible to new users like yourself:

It has been designed specially to be easy to read by human beings, and so
it is very easy to learn and understand.
It is interpreted, that is, unlike compiled languages like C, your program
doesn't need to be compiled before it is executed. The code you write can
be immediately executed, line by line if you want so. This makes it
extremely easy to learn and to find errors in your code, because you go
slowly, step-by-step.
It can be embedded in other programs to be used as scripting language.
FreeCAD has an embedded Python interpreter, so you can write Python
code in FreeCAD, that will manipulate parts of FreeCAD, for example to
create geometry. This is extremely powerful, because instead of just
clicking a button labeled "create sphere", that a programmer has placed
there for you, you have the freedom to create easily your own tool to
create exactly the geometry you want.
It is extensible, you can easily plug new modules in your Python
installation and extend its functionality. For example, you have modules
that allow Python to read and write jpg images, to communicate with
twitter, to schedule tasks to be performed by your operating system, etc.

So, hands on! Be aware that what will come next is a very simple introduction,
by no means a complete tutorial. But my hope is that after that you'll get
enough basics to explore deeper into the FreeCAD mechanisms.

The interpreter
Usually, when writing computer programs, you simply open a text editor or
your special programming environment which is in most case a text editor with
several tools around it, write your program, then compile it and execute it.
Most of the time you made errors while writing, so your program won't work,
and you will get an error message telling you what went wrong. Then you go
back to your text editor, correct the mistakes, run again, and so on until your
program works fine.

That whole process, in Python, can be done transparently inside the Python

Manual - FreeCAD Documentation

86 von 244

interpreter. The interpreter is a Python window with a command prompt, where
you can simply type Python code. If you install Python on your computer
(download it from the Python website (http://www.python.org) if you are on
Windows or Mac, install it from your package repository if you are on
GNU/Linux), you will have a Python interpreter in your start menu. But FreeCAD
also has a Python interpreter in its bottom part:

 (/wiki

/index.php?title=File:Screenshot_pythoninterpreter.jpg)

(If you don't have it, click on View ? Views ? Python console.)

The interpreter shows the Python version, then a >>> symbol, which is the
command prompt, that is, where you enter Python code. Writing code in the
interpreter is simple: one line is one instruction. When you press Enter, your
line of code will be executed (after being instantly and invisibly compiled). For
example, try writing this: </translate>

print "hello"

<translate> print is a special Python keyword that means, obviously, to print
something on the screen. When you press Enter, the operation is executed, and
the message "hello" is printed. If you make an error, for example let's write:
</translate>

print hello

<translate> Python will tell us that it doesn't know what hello is. The "
characters specify that the content is a string, which is simply, in programming
jargon, a piece of text. Without the ", the print command believed hello was
not a piece of text but a special Python keyword. The important thing is, you
immediately get notified that you made an error. By pressing the up arrow (or,
in the FreeCAD interpreter, CTRL+up arrow), you can go back to the last
command you wrote and correct it.

The Python interpreter also has a built-in help system. Try typing: </translate>

help

<translate> or, for example, let's say we don't understand what went wrong
with our print hello command above, we want specific information about the
"print" command: </translate>

help("print")

<translate> You'll get a long and complete description of everything the print
command can do.

Now we dominate totally our interpreter, we can begin with serious stuff.

Variables
Of course, printing "hello" is not very interesting. More interesting is printing

Manual - FreeCAD Documentation

87 von 244

stuff you don't know before, or let Python find for you. That's where the
concept of variable comes in. A variable is simply a value that you store under
a name. For example, type this: </translate>

a = "hello"

print a

<translate> I guess you understood what happened, we "saved" the string
"hello" under the name a. Now, a is not an unknown name anymore! We can
use it anywhere, for example in the print command. We can use any name we
want, just respecting simple rules, like not using spaces or punctuation. For
example, we could very well write: </translate>

hello = "my own version of hello"

print hello

<translate> See? now hello is not an undefined word anymore. What if, by
terrible bad luck, we choosed a name that already exists in Python? Let's say
we want to store our string under the name "print": </translate>

print = "hello"

<translate> Python is very intelligent and will tell us that this is not possible. It
has some "reserved" keywords that cannot be modified. But our own variables
can be modified anytime, that's exactly why they are called variables, the
contents can vary. For example: </translate>

myVariable = "hello"

print myVariable

myVariable = "good bye"

print myVariable

<translate> We changed the value of myVariable. We can also copy variables:
</translate>

var1 = "hello"

var2 = var1

print var2

<translate> Note that it is interesting to give good names to your variables,
because when you'll write long programs, after a while you won't remember
what your variable named "a" is for. But if you named it for example
myWelcomeMessage, you'll remember easily what it is used for when you'll see
it.

Numbers
Of course you must know that programming is useful to treat all kind of data,
and especially numbers, not only text strings. One thing is important, Python
must know what kind of data it is dealing with. We saw in our print hello
example, that the print command recognized our "hello" string. That is
because by using the ", we told specifically the print command that what it
would come next is a text string.

We can always check what data type is the contents of a variable with the
special Python keyword type: </translate>

myVar = "hello"

type(myVar)

<translate> It will tell us the contents of myVar is 'str', or string in Python
jargon. We have also other basic types of data, such as integer and float
numbers: </translate>

Manual - FreeCAD Documentation

88 von 244

firstNumber = 10

secondNumber = 20

print firstNumber + secondNumber

type(firstNumber)

<translate> This is already much more interesting, isn't it? Now we already
have a powerful calculator! Look well at how it worked, Python knows that 10
and 20 are integer numbers. So they are stored as "int", and Python can do
with them everything it can do with integers. Look at the results of this:
</translate>

firstNumber = "10"

secondNumber = "20"

print firstNumber + secondNumber

<translate> See? We forced Python to consider that our two variables are not
numbers but mere pieces of text. Python can add two pieces of text together,
but it won't try to find out any sum. But we were talking about integer
numbers. There are also float numbers. The difference is that integer numbers
don't have decimal part, while foat numbers can have a decimal part:
</translate>

var1 = 13

var2 = 15.65

print "var1 is of type ", type(var1)

print "var2 is of type ", type(var2)

<translate> Int and Floats can be mixed together without problem: </translate>

total = var1 + var2

print total

print type(total)

<translate> Of course the total has decimals, right? Then Python automatically
decided that the result is a float. In several cases such as this one, Python
automatically decides what type to give to something. In other cases it doesn't.
For example: </translate>

varA = "hello 123"

varB = 456

print varA + varB

<translate> This will give us an error, varA is a string and varB is an int, and
Python doesn't know what to do. But we can force Python to convert between
types: </translate>

varA = "hello"

varB = 123

print varA + str(varB)

<translate> Now both are strings, the operation works! Note that we
"stringified" varB at the time of printing, but we didn't change varB itself. If we
wanted to turn varB permanently into a string, we would need to do this:
</translate>

varB = str(varB)

<translate> We can also use int() and float() to convert to int and float if we
want: </translate>

varA = "123"

print int(varA)

print float(varA)

<translate> Note on Python commands

Manual - FreeCAD Documentation

89 von 244

You must have noticed that in this section we used the print command in
several ways. We printed variables, sums, several things separated by commas,
and even the result of other Python command such as type(). Maybe you also
saw that doing those two commands: </translate>

type(varA)

print type(varA)

<translate> have exactly the same result. That is because we are in the
interpreter, and everything is automatically printed on screen. When we'll write
more complex programs that run outside the interpreter, they won't print
automatically everything on screen, so we'll need to use the print command.
But from now on, let's stop using it here, it'll go faster. So we can simply write:
</translate>

myVar = "hello friends"

myVar

<translate> You must also have seen that most of the Python commands (or
keywords) we already know have parenthesis used to tell them on what
contents the command must work: type(), int(), str(), etc. Only exception is the
print command, which in fact is not an exception, it also works normally like
this: print("hello"), but, since it is used often, the Python programmers made a
simplified version.

Lists
Another interesting data type is lists. A list is simply a list of other data. The
same way as we define a text string by using " ", we define lists by using []:
</translate>

myList = [1,2,3]

type(myList)

myOtherList = ["Bart", "Frank", "Bob"]

myMixedList = ["hello", 345, 34.567]

<translate> You see that it can contain any type of data. Lists are very useful
because you can group variables together. You can then do all kind of things
within that groups, for example counting them: </translate>

len(myOtherList)

<translate> or retrieving one item of a list: </translate>

myName = myOtherList[0]

myFriendsName = myOtherList[1]

<translate> You see that while the len() command returns the total number of
items in a list, their "position" in the list begins with 0. The first item in a list is
always at position 0, so in our myOtherList, "Bob" will be at position 2. We can
do much more stuff with lists such as you can read here
(http://www.diveintopython.net/native_data_types/lists.html), such as sorting
contents, removing or adding elements.

A funny and interesting thing for you: a text string is very similar to a list of
characters! Try doing this: </translate>

myvar = "hello"

len(myvar)

myvar[2]

<translate> Usually all you can do with lists can also be done with strings. In
fact both lists and strings are sequences.

Manual - FreeCAD Documentation

90 von 244

Outside strings, ints, floats and lists, there are more built-in data types, such
as dictionnaries (http://www.diveintopython.net/native_data_types
/index.html#d0e5174), or you can even create your own data types with classes
(http://www.freenetpages.co.uk/hp/alan.gauld/tutclass.htm).

Indentation
One big cool use of lists is also browsing through them and do something with
each item. For example look at this: </translate>

alldaltons = ["Joe", "William", "Jack", "Averell"]

for dalton in alldaltons:

print dalton + " Dalton"

<translate> We iterated (programming jargon again!) through our list with the
"for ... in ..." command and did something with each of the items. Note the
special syntax: the for command terminates with : which indicates that what
will comes after will be a block of one of more commands. Immediately after
you enter the command line ending with :, the command prompt will change to
... which means Python knows that a :-ended line has happened and that what
will come next will be part of it.

How will Python know how many of the next lines will be to be executed inside
the for...in operation? For that, Python uses indentation. That is, your next lines
won't begin immediately. You will begin them with a blank space, or several
blank spaces, or a tab, or several tabs. Other programming languages use
other methods, like putting everythin inside parenthesis, etc. As long as you
write your next lines with the same indentation, they will be considered part of
the for-in block. If you begin one line with 2 spaces and the next one with 4,
there will be an error. When you finished, just write another line without
indentation, or simply press Enter to come back from the for-in block

Indentation is cool because if you make big ones (for example use tabs instead
of spaces because it's larger), when you write a big program you'll have a clear
view of what is executed inside what. We'll see that many other commands
than for-in can have indented blocks of code too.

For-in commands can be used for many things that must be done more than
once. It can for example be combined with the range() command: </translate>

serie = range(1,11)

total = 0

print "sum"

for number in serie:

print number

 total = total + number

print "----"

print total

<translate> For use float in for loop range. </translate>

decimales = 1000 # for 3 decimales

#decimales = 10000 # for 4 decimales ...

for i in range(int(0 * decimales),int(180 * decimales),int(0.5 * decimales)):

print float(i) / decimales

<translate> Or more complex things like this: </translate>

alldaltons = ["Joe", "William", "Jack", "Averell"]

for n in range(4):

print alldaltons[n], " is Dalton number ", n

<translate> You see that the range() command also has that strange
particularity that it begins with 0 (if you don't specify the starting number) and

Manual - FreeCAD Documentation

91 von 244

that its last number will be one less than the ending number you specify. That
is, of course, so it works well with other Python commands. For example:
</translate>

alldaltons = ["Joe", "William", "Jack", "Averell"]

total = len(alldaltons)

for n in range(total):

print alldaltons[n]

<translate> Another interesting use of indented blocks is with the if command.
If executes a code block only if a certain condition is met, for example:
</translate>

alldaltons = ["Joe", "William", "Jack", "Averell"]

if "Joe" in alldaltons:

print "We found that Dalton!!!"

<translate> Of course this will always print the first sentence, but try replacing
the second line by: </translate>

if "Lucky" in alldaltons:

<translate> Then nothing is printed. We can also specify an else: statement:
</translate>

alldaltons = ["Joe", "William", "Jack", "Averell"]

if "Lucky" in alldaltons:

print "We found that Dalton!!!"

else:

print "Such Dalton doesn't exist!"

<translate>

Functions
The standard Python commands (http://docs.python.org/reference
/lexical_analysis.html#identifiers) are not many. In current version of Python
there are about 30, and we already know several of them. But imagine if we
could invent our own commands? Well, we can, and it's extremely easy. In fact,
most the additional modules that you can plug into your Python installation do
just that, they add commands that you can use. A custom command in Python
is called a function and is made like this: </translate>

def printsqm(myValue):

print str(myValue)+" square meters"

printsqm(45)

<translate> Extremely simple: the def() command defines a new function. You
give it a name, and inside the parenthesis you define arguments that we'll use
in our function. Arguments are data that will be passed to the function. For
example, look at the len() command. If you just write len() alone, Python will
tell you it needs an argument. That is, you want len() of something, right? Then,
for example, you'll write len(myList) and you'll get the length of myList. Well,
myList is an argument that you pass to the len() function. The len() function is
defined in such a way that it knows what to do with what is passed to it. Same
as we did here.

The "myValue" name can be anything, and it will be used only inside the
function. It is just a name you give to the argument so you can do something
with it, but it also serves so the function knows how many arguments to
expect. For example, if you do this: </translate>

Manual - FreeCAD Documentation

92 von 244

printsqm(45,34)

<translate> There will be an error. Our function was programmed to receive
just one argument, but it received two, 45 and 34. We could instead do
something like this: </translate>

def sum(val1,val2):

 total = val1 + val2

return total

sum(45,34)

myTotal = sum(45,34)

<translate> We made a function that receives two arguments, sums them, and
returns that value. Returning something is very useful, because we can do
something with the result, such as store it in the myTotal variable. Of course,
since we are in the interpreter and everything is printed, doing: </translate>

sum(45,34)

<translate> will print the result on the screen, but outside the interpreter,
since there is no more print command inside the function, nothing would
appear on the screen. You would need to do: </translate>

print sum(45,34)

<translate> to have something printed. Read more about functions here
(http://www.diveintopython.net/getting_to_know_python
/declaring_functions.html).

Modules
Now that we have a good idea of how Python works, we'll need one last thing:
How to work with files and modules.

Until now, we wrote Python instructions line by line in the interpreter, right?
What if we could write several lines together, and have them executed all at
once? It would certainly be handier for doing more complex things. And we
could save our work too. Well, that too, is extremely easy. Simply open a text
editor (such as the windows notepad), and write all your Python lines, the
same way as you write them in the interpreter, with indentations, etc. Then,
save that file somewhere, preferably with a .py extension. That's it, you have a
complete Python program. Of course, there are much better editors than
notepad, but it is just to show you that a Python program is nothing else than a
text file.

To make Python execute that program, there are hundreds of ways. In windows,
simply right-click your file, open it with Python, and execute it. But you can
also execute it from the Python interpreter itself. For this, the interpreter must
know where your .py program is. In FreeCAD, the easiest way is to place your
program in a place that FreeCAD's Python interpreter knows by default, such as
FreeCAD's bin folder, or any of the Mod folders. Suppose we write a file like
this: </translate>

def sum(a,b):

return a + b

print "test.py succesfully loaded"

<translate>

and we save it as test.py in our FreeCAD/bin directory. Now, let's start FreeCAD,
and in the interpreter window, write: </translate>

Manual - FreeCAD Documentation

93 von 244

import test

<translate> without the .py extension. This will simply execute the contents of
the file, line by line, just as if we had written it in the interpreter. The sum
function will be created, and the message will be printed. There is one big
difference: the import command is made not only to execute programs written
in files, like ours, but also to load the functions inside, so they become
available in the interpreter. Files containing functions, like ours, are called
modules.

Normally when we write a sum() function in the interpreter, we execute it
simply like that: </translate>

sum(14,45)

<translate> Like we did earlier. When we import a module containing our sum()
function, the syntax is a bit different. We do: </translate>

test.sum(14,45)

<translate> That is, the module is imported as a "container", and all its
functions are inside. This is extremely useful, because we can import a lot of
modules, and keep everything well organized. So, basically, everywhere you
see something.somethingElse, with a dot in between, that means
somethingElse is inside something.

We can also throw out the test part, and import our sum() function directly
into the main interpreter space, like this: </translate>

from test import *

sum(12,54)

<translate> Basically all modules behave like that. You import a module, then
you can use its functions like that: module.function(argument). Almost all
modules do that: they define functions, new data types and classes that you
can use in the interpreter or in your own Python modules, because nothing
prevents you to import modules inside your module!

One last extremely useful thing. How do we know what modules we have, what
functions are inside and how to use them (that is, what kind of arguments they
need)? We saw already that Python has a help() function. Doing: </translate>

help()

modules

<translate> Will give us a list of all available modules. We can now type q to get
out of the interactive help, and import any of them. We can even browse their
content with the dir() command </translate>

import math

dir(math)

<translate> We'll see all the functions contained in the math module, as well as
strange stuff named __doc__, __file__, __name__. The __doc__ is extremely
useful, it is a documentation text. Every function of (well-made) modules has a
__doc__ that explains how to use it. For example, we see that there is a sin
function in side the math module. Want to know how to use it? </translate>

print math.sin.__doc__

<translate> And finally one last little goodie: When we work on programming a
new module, we often want to test it.

Manual - FreeCAD Documentation

94 von 244

Then it's best to replace the file extension with py and it is a normal Python
module myModule.fcmacro => myModule.py. </translate>

import myModule

myModule.myTestFunction()

<translate> But what if we see that myTestFunction() doesn't work correctly?
We go back to our editor and modifiy it. Then, instead of closing and reopening
the python interpreter, we can simply update the module like this: </translate>

reload(myModule)

<translate> This is because Python doesn't know about the extension fcmacro.

However, there are two ways you can go: 1. Inside the one macro use Python's
exec or execfile functions. </translate>

f = open("myModule","r")

d = f.read()

exec d

<translate> or </translate>

execfile "myModule"

<translate> For share code across macros, you can e.g. access the FreeCAD or
FreeCADGui module (or any other Python module) and set any attribute to it.
This should survive the execution of the macro. </translate>

import FreeCAD

if hasattr(FreeCAD,"macro2_executed"):

...

else:

FreeCAD.macro2_executed = True # you can assign any value because we only check for the existence of

... execute macro2

<translate>

Starting with FreeCAD
Well, I think you must now have a good idea of how Python works, and you can
start exploring what FreeCAD has to offer. FreeCAD's Python functions are all
well organized in different modules. Some of them are already loaded
(imported) when you start FreeCAD. So, just do </translate>

dir()

<translate> and read on to FreeCAD Scripting Basics (/wiki
/index.php?title=FreeCAD_Scripting_Basics)...

Of course, we saw here only a very small part of the Python world. There are
many important concepts that we didn't mention here. There are three very
important Python reference documents on the net:

the official Python tutorial with way more information than this one
(http://docs.python.org/3/tutorial/index.html)
the official Python reference (http://docs.python.org/reference/)
the Dive into Python (http://www.diveintopython.net) wikibook/ book.

Be sure to bookmark them!

Manual - FreeCAD Documentation

95 von 244

< previous: Macros (/wiki/index.php?title=Macros)
next: Python scripting tutorial > (/wiki
/index.php?title=Python_scripting_tutorial)

Index (/wiki

/index.php?title=Online_Help_Toc)
</translate>

<translate>

Python scripting in FreeCAD
FreeCAD is built from scratch to be totally controlled by Python scripts. Almost
all parts of FreeCAD, such as the interface, the scene contents, and even the
representation of this content in the 3D views, are accessible from the built-in
Python interpreter or from your own scripts. As a result, FreeCAD is probably
one of the most deeply customizable engineering applications available today.

In its current state however, FreeCAD has very few 'native' commands to
interact with your 3D objects, mainly because it is still in the early stages of
development, but also because the philosophy behind it is more to provide a
platform for CAD development than a specific use application. But the ease of
Python scripting inside FreeCAD is a quick way to see new functionality being
developed by 'power users', typically users who know a bit of Python
programming. Python is one of the most popular interpreted languages, and
because it is generally regarded as easy to learn, you too can soon be making
your own FreeCAD 'power user' scripts.

If you are not familiar with Python, we recommend you search for tutorials on
the internet and have a quick look at its structure. Python is a very easy
language to learn, especially because it can be run inside an interpreter, where
simple commands, right up to complete programs, can be executed on the fly
without the need to compile anything. FreeCAD has a built-in Python
interpreter. If you don't see the window labeled 'Python console' as shown
below, you can activate it under the View -> Views -> Python console to
bring-up the interpreter.

The interpreter

From the interpreter, you can access all your system-installed Python modules,
as well as the built-in FreeCAD modules, and all additional FreeCAD modules
you installed later. The screenshot below shows the Python interpreter:

 (/wiki

/index.php?title=File:Screenshot_pythoninterpreter.jpg)

From the interpreter, you can execute Python code and browse through the
available classes and functions. FreeCAD provides a very handy class browser
for exploration of your new FreeCAD world: When you type the name of a
known class followed by a period (meaning you want to add something from
that class), a class browser window opens, where you can navigate between

Manual - FreeCAD Documentation

96 von 244

available subclasses and methods. When you select something, an associated
help text (if it exists) is displayed:

 (/wiki

/index.php?title=File:Screenshot_classbrowser.jpg)

So, start here by typing App. or Gui. and see what happens. Another more
generic Python way of exploring the content of modules and classes is to use
the 'print dir()' command. For example, typing print dir() will list all modules
currently loaded in FreeCAD. print dir(App) will show you everything inside the
App module, etc.

Another useful feature of the interpreter is the possibility to go back through
the command history and retrieve a line of code that you already typed earlier.
To navigate through the command history, just use CTRL+UP or CTRL+DOWN.

By right-clicking in the interpreter window, you also have several other
options, such as copy the entire history (useful when you want to experiment
with things before making a full script of them), or insert a filename with
complete path.

Python Help

In the FreeCAD Help menu, you'll find an entry labeled 'Python help', which will
open a browser window containing a complete, realtime-generated
documentation of all Python modules available to the FreeCAD interpreter,
including Python and FreeCAD built-in modules, system-installed modules, and
FreeCAD additional modules. The documentation available there depends on
how much effort each module developer put into documenting his code, but
usually Python modules have a reputation for being fairly well documented.
Your FreeCAD window must stay open for this documentation system to work.

Built-in modules
Since FreeCAD is designed to be run without a Graphical User Interface (GUI),
almost all its functionality is separated into two groups: Core functionality,
named 'App', and GUI functionality, named 'Gui'. So, our two main FreeCAD
built-in modules are called App and Gui. These two modules can also be
accessed from scripts outside of the interpreter, by the names 'FreeCAD' and
'FreeCADGui' respectively.

In the App module, you'll find everything related to the application itself,
like methods for opening or closing files, and to the documents, like
setting the active document or listing their contents.
In the Gui module, you'll find tools for accessing and managing Gui
elements, like the workbenches and their toolbars, and, more
interestingly, the graphical representation of all FreeCAD content.

Listing all the content of those modules is a bit counter-productive task, since
they grow quite fast with FreeCAD development. But the two browsing tools
provided (the class browser and the Python help) should give you, at any

Manual - FreeCAD Documentation

97 von 244

moment, complete and up-to-date documentation of these modules.

The App and Gui objects

As we said, in FreeCAD, everything is separated between core and
representation. This includes the 3D objects too. You can access defining
properties of objects (called features in FreeCAD) via the App module, and
change the way they are represented on screen via the Gui module. For
example, a cube has properties that define it, (like width, length, height) that
are stored in an App object, and representation properties, (like faces color,
drawing mode) that are stored in a corresponding Gui object.

This way of doing things allows a very wide range of uses, like having
algorithms work only on the definition part of features, without the need to
care about any visual part, or even redirect the content of the document to
non-graphical application, such as lists, spreadsheets, or element analysis.

For every App object in your document, there exists a corresponding Gui
object. Infact the document itself has both App and a Gui objects. This, of
course, is only valid when you run FreeCAD with its full interface. In the
command-line version no GUI exists, so only App objects are availible. Note
that the Gui part of objects is re-generated every time an App object is marked
as 'to be recomputed' (for example when one of its parameters changes), so
changes you might have made directly to the Gui object may be lost.

To access the App part of something, you type: </translate>

myObject = App.ActiveDocument.getObject("ObjectName")

<translate> where "ObjectName" is the name of your object. You can also type:
</translate>

myObject = App.ActiveDocument.ObjectName

<translate> To access the Gui part of the same object, you type: </translate>

myViewObject = Gui.ActiveDocument.getObject("ObjectName")

<translate> where "ObjectName" is the name of your object. You can also type:
</translate>

myViewObject = App.ActiveDocument.ObjectName.ViewObject

<translate> If we have no GUI (for example we are in command-line mode), the
last line will return 'None'.

The Document objects

In FreeCAD all your work resides inside Documents. A document contains your
geometry and can be saved to a file. Several documents can be opened at the
same time. The document, like the geometry contained inside, has App and Gui
objects. App object contains your actual geometry definitions, while the Gui
object contains the different views of your document. You can open several
windows, each one viewing your work with a different zoom factor or point of
view. These views are all part of your document's Gui object.

To access the App part the currently open (active) document, you type:
</translate>

myDocument = App.ActiveDocument

<translate> To create a new document, type: </translate>

Manual - FreeCAD Documentation

98 von 244

myDocument = App.newDocument("Document Name")

<translate> To access the Gui part the currently open (active) document, you
type: </translate>

myGuiDocument = Gui.ActiveDocument

<translate> To access the current view, you type: </translate>

myView = Gui.ActiveDocument.ActiveView

<translate>

Using additional modules
The FreeCAD and FreeCADGui modules are solely responsibles for creating and
managing objects in the FreeCAD document. They don't actually do anything
such as creating or modifying geometry. That is because that geometry can be
of several types, and so it is managed by additional modules, each responsible
for managing a certain geometry type. For example, the Part Module (/wiki
/index.php?title=Part_Module) uses the OpenCascade kernel, and therefore is
able to create and manipulate B-rep (http://en.wikipedia.org
/wiki/Boundary_representation) type geometry, which is what OpenCascade is
built for. The Mesh Module (/wiki/index.php?title=Mesh_Module) is able to
build and modify mesh objects. That way, FreeCAD is able to handle a wide
variety of object types, that can all coexist in the same document, and new
types could be added easily in the future.

Creating objects

Each module has its own way to treat its geometry, but one thing they usually
all can do is create objects in the document. But the FreeCAD document is also
aware of the available object types provided by the modules: </translate>

FreeCAD.ActiveDocument.supportedTypes()

<translate> will list you all the possible objects you can create. For example,
let's create a mesh (treated by the mesh module) and a part (treated by the
part module): </translate>

myMesh = FreeCAD.ActiveDocument.addObject("Mesh::Feature","myMeshName")

myPart = FreeCAD.ActiveDocument.addObject("Part::Feature","myPartName")

<translate> The first argument is the object type, the second the name of the
object. Our two objects look almost the same: They don't contain any geometry
yet, and most of their properties are the same when you inspect them with
dir(myMesh) and dir(myPart). Except for one, myMesh has a "Mesh" property
and "Part" has a "Shape" property. That is where the Mesh and Part data are
stored. For example, let's create a Part cube and store it in our myPart object:
</translate>

import Part

cube = Part.makeBox(2,2,2)

myPart.Shape = cube

<translate> You could try storing the cube inside the Mesh property of the
myMesh object, it will return an error complaining of the wrong type. That is
because those properties are made to store only a certain type. In the
myMesh's Mesh property, you can only save stuff created with the Mesh
module. Note that most modules also have a shortcut to add their geometry to
the document: </translate>

Manual - FreeCAD Documentation

99 von 244

< previous: Python scripting tutorial (/wiki
/index.php?title=Python_scripting_tutorial)

next: Mesh Scripting > (/wiki/index.php?title=Mesh_Scripting)

import Part

cube = Part.makeBox(2,2,2)

Part.show(cube)

<translate>

Modifying objects

Modifying an object is done the same way: </translate>

import Part

cube = Part.makeBox(2,2,2)

myPart.Shape = cube

<translate> Now let's change the shape by a bigger one: </translate>

biggercube = Part.makeBox(5,5,5)

myPart.Shape = biggercube

<translate>

Querying objects

You can always look at the type of an object like this: </translate>

myObj = FreeCAD.ActiveDocument.getObject("myObjectName")

print myObj.TypeId

<translate> or know if an object is derived from one of the basic ones (Part
Feature, Mesh Feature, etc): </translate>

print myObj.isDerivedFrom("Part::Feature")

<translate> Now you can really start playing with FreeCAD! To look at what you
can do with the Part Module (/wiki/index.php?title=Part_Module), read the
Part scripting (/wiki/index.php?title=Topological_data_scripting) page, or the
Mesh Scripting (/wiki/index.php?title=Mesh_Scripting) page for working with
the Mesh Module (/wiki/index.php?title=Mesh_Module). Note that, although
the Part and Mesh modules are the most complete and widely used, other
modules such as the Draft Module (/wiki/index.php?title=Draft_Module) also
have scripting (/wiki/index.php?title=Draft_API) APIs that can be useful to you.
For a complete list of each modules and their available tools, visit the
Category:API (/wiki/index.php?title=Category:API) section.

Index
(/wiki/index.php?title=Online_Help_Toc)

</translate>

<translate>

Introduction

First of all you have to import the Mesh module: </translate>

import Mesh

<translate> After that you have access to the Mesh module and the Mesh class
which facilitate the functions of the FreeCAD C++ Mesh-Kernel.

Creation and Loading

Manual - FreeCAD Documentation

100 von 244

To create an empty mesh object just use the standard constructor:

</translate>

mesh = Mesh.Mesh()

<translate>

You can also create an object from a file

</translate>

mesh = Mesh.Mesh('D:/temp/Something.stl')

<translate>

(A list of compatible filetypes can be found under 'Meshes' here (/wiki
/index.php?title=Feature_list#IO).)

Or create it out of a set of triangles described by their corner points:

</translate>

planarMesh = [

triangle 1

[-0.5000,-0.5000,0.0000],[0.5000,0.5000,0.0000],[-0.5000,0.5000,0.0000],

#triangle 2

[-0.5000,-0.5000,0.0000],[0.5000,-0.5000,0.0000],[0.5000,0.5000,0.0000],

]

planarMeshObject = Mesh.Mesh(planarMesh)

Mesh.show(planarMeshObject)

<translate>

The Mesh-Kernel takes care about creating a topological correct data structure
by sorting coincident points and edges together.

Later on you will see how you can test and examine mesh data.

Modeling

To create regular geometries you can use the Python script
BuildRegularGeoms.py.

</translate>

import BuildRegularGeoms

<translate>

This script provides methods to define simple rotation bodies like spheres,
ellipsoids, cylinders, toroids and cones. And it also has a method to create a
simple cube. To create a toroid, for instance, can be done as follows:

</translate>

t = BuildRegularGeoms.Toroid(8.0, 2.0, 50) # list with several thousands triangles

m = Mesh.Mesh(t)

<translate>

The first two parameters define the radiuses of the toroid and the third
parameter is a sub-sampling factor for how many triangles are created. The
higher this value the smoother and the lower the coarser the body is. The
Mesh class provides a set of boolean functions that can be used for modeling
purposes. It provides union, intersection and difference of two mesh objects.

</translate>

Manual - FreeCAD Documentation

101 von 244

< previous: FreeCAD Scripting Basics (/wiki
/index.php?title=FreeCAD_Scripting_Basics)
next: Topological data scripting > (/wiki
/index.php?title=Topological_data_scripting)

m1, m2 # are the input mesh objects

m3 = Mesh.Mesh(m1) # create a copy of m1

m3.unite(m2) # union of m1 and m2, the result is stored in m3

m4 = Mesh.Mesh(m1)

m4.intersect(m2) # intersection of m1 and m2

m5 = Mesh.Mesh(m1)

m5.difference(m2) # the difference of m1 and m2

m6 = Mesh.Mesh(m2)

m6.difference(m1) # the difference of m2 and m1, usually the result is different to m5

<translate>

Finally, a full example that computes the intersection between a sphere and a
cylinder that intersects the sphere.

</translate>

import Mesh, BuildRegularGeoms

sphere = Mesh.Mesh(BuildRegularGeoms.Sphere(5.0, 50))

cylinder = Mesh.Mesh(BuildRegularGeoms.Cylinder(2.0, 10.0, True, 1.0, 50))

diff = sphere

diff = diff.difference(cylinder)

d = FreeCAD.newDocument()

d.addObject("Mesh::Feature","Diff_Sphere_Cylinder").Mesh=diff

d.recompute()

<translate>

Examining and Testing

Write your own Algorithms

Exporting

You can even write the mesh to a python module:

</translate>

m.write("D:/Develop/Projekte/FreeCAD/FreeCAD_0.7/Mod/Mesh/SavedMesh.py")

import SavedMesh

m2 = Mesh.Mesh(SavedMesh.faces)

<translate>

Gui related stuff

Odds and Ends

An extensive (though hard to use) source of Mesh related scripting are the unit
test scripts of the Mesh-Module. In this unit tests literally all methods are
called and all properties/attributes are tweaked. So if you are bold enough,
take a look at the Unit Test module (http://free-cad.svn.sourceforge.net
/viewvc/free-cad/trunk/src/Mod/Mesh/App/MeshTestsApp.py?view=markup).

See also Mesh API (/wiki/index.php?title=Mesh_API)

Index (/wiki/index.php?title=Online_Help_Toc)
</translate>

<translate>

Manual - FreeCAD Documentation

102 von 244

 (/wiki/index.php?title=File:Base_ExampleCommandModel.png) Tutorial

Topic
Programming
Level
Intermediate
Time to complete

Author

FreeCAD version

Example File(s)

This page describes several methods for creating and modifying Part shapes
(/wiki/index.php?title=Part_Module) from python. Before reading this page, if
you are new to python, it is a good idea to read about python scripting (/wiki
/index.php?title=Introduction_to_Python) and how python scripting works in
FreeCAD (/wiki/index.php?title=FreeCAD_Scripting_Basics).

Introduction
Here we will explain to you how to control the Part Module (/wiki
/index.php?title=Part_Module) directly from the FreeCAD Python interpreter, or
from any external script. The basics about Topological data scripting are
described in Part Module Explaining the concepts (/wiki
/index.php?title=Part_Module#Explaining_the_concepts). Be sure to browse
the Scripting (/wiki/index.php?title=Scripting) section and the FreeCAD
Scripting Basics (/wiki/index.php?title=FreeCAD_Scripting_Basics) pages if you
need more information about how python scripting works in FreeCAD.

Class Diagram

This is a Unified Modeling Language (UML) (http://en.wikipedia.org
/wiki/Unified_Modeling_Language) overview of the most important classes of
the Part module:

Manual - FreeCAD Documentation

103 von 244

(/wiki/index.php?title=File:Part_Classes.jpg)

Geometry

The geometric objects are the building block of all topological objects:

Geom Base class of the geometric objects
Line A straight line in 3D, defined by starting point and end point
Circle Circle or circle segment defined by a center point and start and end
point
...... And soon some more

Topology

The following topological data types are available:

Compound A group of any type of topological object.
Compsolid A composite solid is a set of solids connected by their faces. It
expands the notions of WIRE and SHELL to solids.
Solid A part of space limited by shells. It is three dimensional.
Shell A set of faces connected by their edges. A shell can be open or
closed.
Face In 2D it is part of a plane; in 3D it is part of a surface. Its geometry is
constrained (trimmed) by contours. It is two dimensional.
Wire A set of edges connected by their vertices. It can be an open or
closed contour depending on whether the edges are linked or not.
Edge A topological element corresponding to a restrained curve. An edge
is generally limited by vertices. It has one dimension.
Vertex A topological element corresponding to a point. It has zero
dimension.
Shape A generic term covering all of the above.

Quick example : Creating simple topology

Manual - FreeCAD Documentation

104 von 244

 (/wiki/index.php?title=File:Wire.png)

We will now create a topology by constructing it out of simpler geometry. As a
case study we use a part as seen in the picture which consists of four vertexes,
two circles and two lines.
Creating Geometry

First we have to create the distinct geometric parts of this wire. And we have to
take care that the vertexes of the geometric parts are at the same position.
Otherwise later on we might not be able to connect the geometric parts to a
topology!

So we create first the points:

</translate>

from FreeCAD import Base

V1 = Base.Vector(0,10,0)

V2 = Base.Vector(30,10,0)

V3 = Base.Vector(30,-10,0)

V4 = Base.Vector(0,-10,0)

<translate>
Arc

 (/wiki/index.php?title=File:Circel.png)

To create an arc of circle we make a helper point and create the arc of circle
through three points:

</translate>

VC1 = Base.Vector(-10,0,0)

C1 = Part.Arc(V1,VC1,V4)

and the second one

VC2 = Base.Vector(40,0,0)

C2 = Part.Arc(V2,VC2,V3)

<translate>
Line

 (/wiki/index.php?title=File:Line.png)

The line can be created very simple out of the points:

</translate>

L1 = Part.Line(V1,V2)

and the second one

L2 = Part.Line(V4,V3)

Manual - FreeCAD Documentation

105 von 244

<translate>
Putting all together

The last step is to put the geometric base elements together and bake a
topological shape:

</translate>

S1 = Part.Shape([C1,C2,L1,L2])

<translate>
Make a prism

Now extrude the wire in a direction and make an actual 3D shape:

</translate>

W = Part.Wire(S1.Edges)

P = W.extrude(Base.Vector(0,0,10))

<translate>
Show it all

</translate>

Part.show(P)

<translate>

Creating basic shapes
You can easily create basic topological objects with the "make...()" methods
from the Part Module:

</translate>

b = Part.makeBox(100,100,100)

Part.show(b)

<translate>

A couple of other make...() methods available:

makeBox(l,w,h): Makes a box located in p and pointing into the direction d
with the dimensions (l,w,h)
makeCircle(radius): Makes a circle with a given radius
makeCone(radius1,radius2,height): Makes a cone with a given radii and
height
makeCylinder(radius,height): Makes a cylinder with a given radius and
height.
makeLine((x1,y1,z1),(x2,y2,z2)): Makes a line of two points
makePlane(length,width): Makes a plane with length and width
makePolygon(list): Makes a polygon of a list of points
makeSphere(radius): Make a sphere with a given radius
makeTorus(radius1,radius2): Makes a torus with a given radii

See the Part API (/wiki/index.php?title=Part_API) page for a complete list of
available methods of the Part module.
Importing the needed modules

Manual - FreeCAD Documentation

106 von 244

First we need to import the Part module so we can use its contents in python.
We'll also import the Base module from inside the FreeCAD module:

</translate>

import Part

from FreeCAD import Base

<translate>
Creating a Vector

Vectors (http://en.wikipedia.org/wiki/Euclidean_vector) are one of the most
important pieces of information when building shapes. They contain a 3
numbers usually (but not necessarily always) the x, y and z cartesian
coordinates. You create a vector like this:

</translate>

myVector = Base.Vector(3,2,0)

<translate>

We just created a vector at coordinates x=3, y=2, z=0. In the Part module,
vectors are used everywhere. Part shapes also use another kind of point
representation, called Vertex, which is acually nothing else than a container
for a vector. You access the vector of a vertex like this:

</translate>

myVertex = myShape.Vertexes[0]

print myVertex.Point

> Vector (3, 2, 0)

<translate>
Creating an Edge

An edge is nothing but a line with two vertexes:

</translate>

edge = Part.makeLine((0,0,0), (10,0,0))

edge.Vertexes

> [<Vertex object at 01877430>, <Vertex object at 014888E0>]

<translate>

Note: You can also create an edge by passing two vectors:

</translate>

vec1 = Base.Vector(0,0,0)

vec2 = Base.Vector(10,0,0)

line = Part.Line(vec1,vec2)

edge = line.toShape()

<translate>

You can find the length and center of an edge like this:

</translate>

edge.Length

> 10.0

edge.CenterOfMass

> Vector (5, 0, 0)

<translate>

Manual - FreeCAD Documentation

107 von 244

Putting the shape on screen

So far we created an edge object, but it doesn't appear anywhere on screen.
This is because we just manipulated python objects here. The FreeCAD 3D
scene only displays what you tell it to display. To do that, we use this simple
method:

</translate>

Part.show(edge)

<translate>

An object will be created in our FreeCAD document, and our "edge" shape will
be attributed to it. Use this whenever it's time to display your creation on
screen.
Creating a Wire

A wire is a multi-edge line and can be created from a list of edges or even a list
of wires:

</translate>

edge1 = Part.makeLine((0,0,0), (10,0,0))

edge2 = Part.makeLine((10,0,0), (10,10,0))

wire1 = Part.Wire([edge1,edge2])

edge3 = Part.makeLine((10,10,0), (0,10,0))

edge4 = Part.makeLine((0,10,0), (0,0,0))

wire2 = Part.Wire([edge3,edge4])

wire3 = Part.Wire([wire1,wire2])

wire3.Edges

> [<Edge object at 016695F8>, <Edge object at 0197AED8>, <Edge object at 01828B20>, <Edge

Part.show(wire3)

<translate>

Part.show(wire3) will display the 4 edges that compose our wire. Other useful
information can be easily retrieved:

</translate>

wire3.Length

> 40.0

wire3.CenterOfMass

> Vector (5, 5, 0)

wire3.isClosed()

> True

wire2.isClosed()

> False

<translate>
Creating a Face

Only faces created from closed wires will be valid. In this example, wire3 is a
closed wire but wire2 is not a closed wire (see above)

</translate>

Manual - FreeCAD Documentation

108 von 244

face = Part.Face(wire3)

face.Area

> 99.999999999999972

face.CenterOfMass

> Vector (5, 5, 0)

face.Length

> 40.0

face.isValid()

> True

sface = Part.Face(wire2)

face.isValid()

> False

<translate>

Only faces will have an area, not wires nor edges.
Creating a Circle

A circle can be created as simply as this:

</translate>

circle = Part.makeCircle(10)

circle.Curve

> Circle (Radius : 10, Position : (0, 0, 0), Direction : (0, 0, 1))

<translate>

If you want to create it at certain position and with certain direction:

</translate>

ccircle = Part.makeCircle(10, Base.Vector(10,0,0), Base.Vector(1,0,0))

ccircle.Curve

> Circle (Radius : 10, Position : (10, 0, 0), Direction : (1, 0, 0))

<translate>

ccircle will be created at distance 10 from origin on x and will be facing
towards x axis. Note: makeCircle only accepts Base.Vector() for position and
normal but not tuples. You can also create part of the circle by giving start
angle and end angle as:

</translate>

from math import pi

arc1 = Part.makeCircle(10, Base.Vector(0,0,0), Base.Vector(0,0,1), 0, 180)

arc2 = Part.makeCircle(10, Base.Vector(0,0,0), Base.Vector(0,0,1), 180, 360)

<translate>

Both arc1 and arc2 jointly will make a circle. Angles should be provided in
degrees, if you have radians simply convert them using formula: degrees =
radians * 180/PI or using python's math module (after doing import math, of
course):

</translate>

degrees = math.degrees(radians)

<translate>
Creating an Arc along points

Unfortunately there is no makeArc function but we have Part.Arc function to
create an arc along three points. Basically it can be supposed as an arc joining
start point and end point along the middle point. Part.Arc creates an arc object
on which .toShape() has to be called to get the edge object, the same way as

Manual - FreeCAD Documentation

109 von 244

when using Part.Line instead of Part.makeLine.

</translate>

arc = Part.Arc(Base.Vector(0,0,0),Base.Vector(0,5,0),Base.Vector(5,5,0))

arc

> <Arc object>

arc_edge = arc.toShape()

<translate>

Arc only accepts Base.Vector() for points but not tuples. arc_edge is what we
want which we can display using Part.show(arc_edge). You can also obtain an
arc by using a portion of a circle:

</translate>

from math import pi

circle = Part.Circle(Base.Vector(0,0,0),Base.Vector(0,0,1),10)

arc = Part.Arc(c,0,pi)

<translate>

Arcs are valid edges, like lines. So they can be used in wires too.
Creating a polygon

A polygon is simply a wire with multiple straight edges. The makePolygon
function takes a list of points and creates a wire along those points:

</translate>

lshape_wire = Part.makePolygon([Base.Vector(0,5,0),Base.Vector(0,0,0),Base.Vector(5,0,0)])

<translate>
Creating a Bezier curve

Bézier curves are used to model smooth curves using a series of poles (points)
and optional weights. The function below makes a Part.BezierCurve from a
series of FreeCAD.Vector points. (Note: when "getting" and "setting" a single
pole or weight indices start at 1, not 0.)

</translate>

def makeBCurveEdge(Points):

 geomCurve = Part.BezierCurve()

 geomCurve.setPoles(Points)

 edge = Part.Edge(geomCurve)

return(edge)

<translate>
Creating a Plane

A Plane is simply a flat rectangular surface. The method used to create one is
this: makePlane(length,width,[start_pnt,dir_normal]). By default start_pnt =
Vector(0,0,0) and dir_normal = Vector(0,0,1). Using dir_normal = Vector(0,0,1) will
create the plane facing z axis, while dir_normal = Vector(1,0,0) will create the
plane facing x axis:

</translate>

plane = Part.makePlane(2,2)

plane

><Face object at 028AF990>

plane = Part.makePlane(2,2, Base.Vector(3,0,0), Base.Vector(0,1,0))

plane.BoundBox

> BoundBox (3, 0, 0, 5, 0, 2)

Manual - FreeCAD Documentation

110 von 244

<translate>

BoundBox is a cuboid enclosing the plane with a diagonal starting at (3,0,0)
and ending at (5,0,2). Here the BoundBox thickness in y axis is zero, since our
shape is totally flat.

Note: makePlane only accepts Base.Vector() for start_pnt and dir_normal but
not tuples
Creating an ellipse

To create an ellipse there are several ways:

</translate>

Part.Ellipse()

<translate>

Creates an ellipse with major radius 2 and minor radius 1 with the center in
(0,0,0)

</translate>

Part.Ellipse(Ellipse)

<translate>

Create a copy of the given ellipse

</translate>

Part.Ellipse(S1,S2,Center)

<translate>

Creates an ellipse centered on the point Center, where the plane of the ellipse
is defined by Center, S1 and S2, its major axis is defined by Center and S1, its
major radius is the distance between Center and S1, and its minor radius is the
distance between S2 and the major axis.

</translate>

Part.Ellipse(Center,MajorRadius,MinorRadius)

<translate>

Creates an ellipse with major and minor radii MajorRadius and MinorRadius,
and located in the plane defined by Center and the normal (0,0,1)

</translate>

eli = Part.Ellipse(Base.Vector(10,0,0),Base.Vector(0,5,0),Base.Vector(0,0,0))

Part.show(eli.toShape())

<translate>

In the above code we have passed S1, S2 and center. Similarly to Arc, Ellipse
also creates an ellipse object but not edge, so we need to convert it into edge
using toShape() to display.

Note: Arc only accepts Base.Vector() for points but not tuples

</translate>

eli = Part.Ellipse(Base.Vector(0,0,0),10,5)

Part.show(eli.toShape())

Manual - FreeCAD Documentation

111 von 244

<translate>

for the above Ellipse constructor we have passed center, MajorRadius and
MinorRadius
Creating a Torus

Using the method makeTorus(radius1,radius2,[pnt,dir,angle1,angle2,angle]). By
default pnt=Vector(0,0,0),dir=Vector(0,0,1),angle1=0,angle2=360 and angle=360.
Consider a torus as small circle sweeping along a big circle. Radius1 is the
radius of big cirlce, radius2 is the radius of small circle, pnt is the center of
torus and dir is the normal direction. angle1 and angle2 are angles in radians
for the small circle, the last parameter angle is to make a section of the torus:

</translate>

torus = Part.makeTorus(10, 2)

<translate>

The above code will create a torus with diameter 20(radius 10) and thickness 4
(small cirlce radius 2)

</translate>

tor=Part.makeTorus(10,5,Base.Vector(0,0,0),Base.Vector(0,0,1),0,180)

<translate>

The above code will create a slice of the torus

</translate>

tor=Part.makeTorus(10,5,Base.Vector(0,0,0),Base.Vector(0,0,1),0,360,180)

<translate>

The above code will create a semi torus, only the last parameter is changed i.e
the angle and remaining angles are defaults. Giving the angle 180 will create
the torus from 0 to 180, that is, a half torus.
Creating a box or cuboid

Using makeBox(length,width,height,[pnt,dir]). By default pnt=Vector(0,0,0) and
dir=Vector(0,0,1)

</translate>

box = Part.makeBox(10,10,10)

len(box.Vertexes)

> 8

<translate>
Creating a Sphere

Using makeSphere(radius,[pnt, dir, angle1,angle2,angle3]). By default
pnt=Vector(0,0,0), dir=Vector(0,0,1), angle1=-90, angle2=90 and angle3=360.
angle1 and angle2 are the vertical minimum and maximum of the sphere,
angle3 is the sphere diameter itself.

</translate>

sphere = Part.makeSphere(10)

hemisphere = Part.makeSphere(10,Base.Vector(0,0,0),Base.Vector(0,0,1),-90,90,180)

<translate>
Creating a Cylinder

Manual - FreeCAD Documentation

112 von 244

Using makeCylinder(radius,height,[pnt,dir,angle]). By default
pnt=Vector(0,0,0),dir=Vector(0,0,1) and angle=360

</translate>
cylinder = Part.makeCylinder(5,20)

partCylinder = Part.makeCylinder(5,20,Base.Vector(20,0,0),Base.Vector(0,0,1),180)

<translate>
Creating a Cone

Using makeCone(radius1,radius2,height,[pnt,dir,angle]). By default
pnt=Vector(0,0,0), dir=Vector(0,0,1) and angle=360

</translate>
cone = Part.makeCone(10,0,20)

semicone = Part.makeCone(10,0,20,Base.Vector(20,0,0),Base.Vector(0,0,1),180)

<translate>

Modifying shapes
There are several ways to modify shapes. Some are simple transformation
operations such as moving or rotating shapes, other are more complex, such
as unioning and subtracting one shape from another. Be aware that

Transform operations

Translating a shape

Translating is the act of moving a shape from one place to another. Any shape
(edge, face, cube, etc...) can be translated the same way:

</translate>
myShape = Part.makeBox(2,2,2)

myShape.translate(Base.Vector(2,0,0))

<translate>
This will move our shape "myShape" 2 units in the x direction.
Rotating a shape

To rotate a shape, you need to specify the rotation center, the axis, and the
rotation angle:

</translate>
myShape.rotate(Vector(0,0,0),Vector(0,0,1),180)

<translate>
The above code will rotate the shape 180 degrees around the Z Axis.
Generic transformations with matrixes

A matrix is a very convenient way to store transformations in the 3D world. In a
single matrix, you can set translation, rotation and scaling values to be applied
to an object. For example:

</translate>
myMat = Base.Matrix()

myMat.move(Base.Vector(2,0,0))

myMat.rotateZ(math.pi/2)

Manual - FreeCAD Documentation

113 von 244

<translate>
Note: FreeCAD matrixes work in radians. Also, almost all matrix operations that
take a vector can also take 3 numbers, so those 2 lines do the same thing:

</translate>
myMat.move(2,0,0)

myMat.move(Base.Vector(2,0,0))

<translate>
When our matrix is set, we can apply it to our shape. FreeCAD provides 2
methods to do that: transformShape() and transformGeometry(). The
difference is that with the first one, you are sure that no deformations will
occur (see "scaling a shape" below). So we can apply our transformation like
this:

</translate>
 myShape.trasformShape(myMat)

<translate>
or

</translate>
myShape.transformGeometry(myMat)

<translate>
Scaling a shape

Scaling a shape is a more dangerous operation because, unlike translation or
rotation, scaling non-uniformly (with different values for x, y and z) can modify
the structure of the shape. For example, scaling a circle with a higher value
horizontally than vertically will transform it into an ellipse, which behaves
mathematically very differently. For scaling, we can't use the transformShape,
we must use transformGeometry():

</translate>
myMat = Base.Matrix()

myMat.scale(2,1,1)

myShape=myShape.transformGeometry(myMat)

<translate>

Boolean Operations

Subtraction

Subtracting a shape from another one is called "cut" in OCC/FreeCAD jargon
and is done like this:

</translate>
cylinder = Part.makeCylinder(3,10,Base.Vector(0,0,0),Base.Vector(1,0,0))

sphere = Part.makeSphere(5,Base.Vector(5,0,0))

diff = cylinder.cut(sphere)

<translate>
Intersection

The same way, the intersection between 2 shapes is called "common" and is
done this way:

</translate>

Manual - FreeCAD Documentation

114 von 244

cylinder1 = Part.makeCylinder(3,10,Base.Vector(0,0,0),Base.Vector(1,0,0))

cylinder2 = Part.makeCylinder(3,10,Base.Vector(5,0,-5),Base.Vector(0,0,1))

common = cylinder1.common(cylinder2)

<translate>
Union

Union is called "fuse" and works the same way:

</translate>
cylinder1 = Part.makeCylinder(3,10,Base.Vector(0,0,0),Base.Vector(1,0,0))

cylinder2 = Part.makeCylinder(3,10,Base.Vector(5,0,-5),Base.Vector(0,0,1))

fuse = cylinder1.fuse(cylinder2)

<translate>
Section

A Section is the intersection between a solid shape and a plane shape. It will
return an intersection curve, a compound with edges

</translate>
cylinder1 = Part.makeCylinder(3,10,Base.Vector(0,0,0),Base.Vector(1,0,0))

cylinder2 = Part.makeCylinder(3,10,Base.Vector(5,0,-5),Base.Vector(0,0,1))

section = cylinder1.section(cylinder2)

section.Wires

> []

section.Edges

> [<Edge object at 0D87CFE8>, <Edge object at 019564F8>, <Edge object at 0D998458>,

<Edge object at 0D86DE18>, <Edge object at 0D9B8E80>, <Edge object at 012A3640>,

<Edge object at 0D8F4BB0>]

<translate>
Extrusion

Extrusion is the act of "pushing" a flat shape in a certain direction resulting in
a solid body. Think of a circle becoming a tube by "pushing it out":

</translate>
circle = Part.makeCircle(10)

tube = circle.extrude(Base.Vector(0,0,2))

<translate>
If your circle is hollow, you will obtain a hollow tube. If your circle is actually a
disc, with a filled face, you will obtain a solid cylinder:

</translate>
wire = Part.Wire(circle)

disc = Part.Face(wire)

cylinder = disc.extrude(Base.Vector(0,0,2))

<translate>

Exploring shapes
You can easily explore the topological data structure:

</translate>

Manual - FreeCAD Documentation

115 von 244

import Part

b = Part.makeBox(100,100,100)

b.Wires

w = b.Wires[0]

w

w.Wires

w.Vertexes

Part.show(w)

w.Edges

e = w.Edges[0]

e.Vertexes

v = e.Vertexes[0]

v.Point

<translate>
By typing the lines above in the python interpreter, you will gain a good
understanding of the structure of Part objects. Here, our makeBox() command
created a solid shape. This solid, like all Part solids, contains faces. Faces
always contain wires, which are lists of edges that border the face. Each face
has at least one closed wire (it can have more if the face has a hole). In the
wire, we can look at each edge separately, and inside each edge, we can see
the vertexes. Straight edges have only two vertexes, obviously.

Edge analysis

In case of an edge, which is an arbitrary curve, it's most likely you want to do a
discretization. In FreeCAD the edges are parametrized by their lengths. That
means you can walk an edge/curve by its length:

</translate>
import Part

box = Part.makeBox(100,100,100)

anEdge = box.Edges[0]

print anEdge.Length

<translate>
Now you can access a lot of properties of the edge by using the length as a
position. That means if the edge is 100mm long the start position is 0 and the
end position 100.

</translate>
anEdge.tangentAt(0.0) # tangent direction at the beginning

anEdge.valueAt(0.0) # Point at the beginning

anEdge.valueAt(100.0) # Point at the end of the edge

anEdge.derivative1At(50.0) # first derivative of the curve in the middle

anEdge.derivative2At(50.0) # second derivative of the curve in the middle

anEdge.derivative3At(50.0) # third derivative of the curve in the middle

anEdge.centerOfCurvatureAt(50) # center of the curvature for that position

anEdge.curvatureAt(50.0) # the curvature

anEdge.normalAt(50) # normal vector at that position (if defined)

<translate>

Using the selection

Here we see now how we can use the selection the user did in the viewer. First
of all we create a box and shows it in the viewer

</translate>
import Part

Part.show(Part.makeBox(100,100,100))

Gui.SendMsgToActiveView("ViewFit")

<translate>

Manual - FreeCAD Documentation

116 von 244

Select now some faces or edges. With this script you can iterate all selected
objects and their sub elements:

</translate>
for o in Gui.Selection.getSelectionEx():

print o.ObjectName

for s in o.SubElementNames:

print "name: ",s

for s in o.SubObjects:

print "object: ",s

<translate>
Select some edges and this script will calculate the length:

</translate>
length = 0.0

for o in Gui.Selection.getSelectionEx():

for s in o.SubObjects:

length += s.Length

print "Length of the selected edges:" ,length

<translate>

Complete example: The OCC bottle
A typical example found in the OpenCasCade Technology Tutorial
(http://www.opencascade.com/doc/occt-6.9.0/overview
/html/occt__tutorial.html#sec1) is how to build a bottle. This is a good exercise
for FreeCAD too. In fact, you can follow our example below and the OCC page
simultaneously, you will understand well how OCC structures are implemented
in FreeCAD. The complete script below is also included in FreeCAD installation
(inside the Mod/Part folder) and can be called from the python interpreter by
typing:

</translate>
import Part

import MakeBottle

bottle = MakeBottle.makeBottle()

Part.show(bottle)

<translate>

The complete script

Here is the complete MakeBottle script:

</translate>

Manual - FreeCAD Documentation

117 von 244

import Part, FreeCAD, math

from FreeCAD import Base

def makeBottle(myWidth=50.0, myHeight=70.0, myThickness=30.0):

 aPnt1=Base.Vector(-myWidth/2.,0,0)

 aPnt2=Base.Vector(-myWidth/2.,-myThickness/4.,0)

 aPnt3=Base.Vector(0,-myThickness/2.,0)

 aPnt4=Base.Vector(myWidth/2.,-myThickness/4.,0)

 aPnt5=Base.Vector(myWidth/2.,0,0)

 aArcOfCircle = Part.Arc(aPnt2,aPnt3,aPnt4)

 aSegment1=Part.Line(aPnt1,aPnt2)

 aSegment2=Part.Line(aPnt4,aPnt5)

 aEdge1=aSegment1.toShape()

 aEdge2=aArcOfCircle.toShape()

 aEdge3=aSegment2.toShape()

 aWire=Part.Wire([aEdge1,aEdge2,aEdge3])

 aTrsf=Base.Matrix()

 aTrsf.rotateZ(math.pi) # rotate around the z-axis

 aMirroredWire=aWire.transformGeometry(aTrsf)

 myWireProfile=Part.Wire([aWire,aMirroredWire])

 myFaceProfile=Part.Face(myWireProfile)

 aPrismVec=Base.Vector(0,0,myHeight)

 myBody=myFaceProfile.extrude(aPrismVec)

 myBody=myBody.makeFillet(myThickness/12.0,myBody.Edges)

 neckLocation=Base.Vector(0,0,myHeight)

 neckNormal=Base.Vector(0,0,1)

 myNeckRadius = myThickness / 4.

 myNeckHeight = myHeight / 10

 myNeck = Part.makeCylinder(myNeckRadius,myNeckHeight,neckLocation,neckNormal)

 myBody = myBody.fuse(myNeck)

 faceToRemove = 0

 zMax = -1.0

for xp in myBody.Faces:

try:

 surf = xp.Surface

if type(surf) == Part.Plane:

 z = surf.Position.z

if z > zMax:

 zMax = z

 faceToRemove = xp

except:

continue

 myBody = myBody.makeThickness([faceToRemove],-myThickness/50 , 1.e-3)

return myBody

<translate>

Detailed explanation

</translate>
import Part, FreeCAD, math

from FreeCAD import Base

<translate>
We will need,of course, the Part module, but also the FreeCAD.Base module,
which contains basic FreeCAD structures like vectors and matrixes.

</translate>

Manual - FreeCAD Documentation

118 von 244

def makeBottle(myWidth=50.0, myHeight=70.0, myThickness=30.0):

 aPnt1=Base.Vector(-myWidth/2.,0,0)

 aPnt2=Base.Vector(-myWidth/2.,-myThickness/4.,0)

 aPnt3=Base.Vector(0,-myThickness/2.,0)

 aPnt4=Base.Vector(myWidth/2.,-myThickness/4.,0)

 aPnt5=Base.Vector(myWidth/2.,0,0)

<translate>
Here we define our makeBottle function. This function can be called without
arguments, like we did above, in which case default values for width, height,
and thickness will be used. Then, we define a couple of points that will be used
for building our base profile.

</translate>
 aArcOfCircle = Part.Arc(aPnt2,aPnt3,aPnt4)

 aSegment1=Part.Line(aPnt1,aPnt2)

 aSegment2=Part.Line(aPnt4,aPnt5)

<translate>
Here we actually define the geometry: an arc, made of 3 points, and two line
segments, made of 2 points.

</translate>
 aEdge1=aSegment1.toShape()

 aEdge2=aArcOfCircle.toShape()

 aEdge3=aSegment2.toShape()

 aWire=Part.Wire([aEdge1,aEdge2,aEdge3])

<translate>
Remember the difference between geometry and shapes? Here we build
shapes out of our construction geometry. 3 edges (edges can be straight or
curved), then a wire made of those three edges.

</translate>
 aTrsf=Base.Matrix()

 aTrsf.rotateZ(math.pi) # rotate around the z-axis

 aMirroredWire=aWire.transformGeometry(aTrsf)

 myWireProfile=Part.Wire([aWire,aMirroredWire])

<translate>
Until now we built only a half profile. Easier than building the whole profile the
same way, we can just mirror what we did, and glue both halfs together. So we
first create a matrix. A matrix is a very common way to apply transformations
to objects in the 3D world, since it can contain in one structure all basic
transformations that 3D objects can suffer (move, rotate and scale). Here, after
we create the matrix, we mirror it, and we create a copy of our wire with that
transformation matrix applied to it. We now have two wires, and we can make a
third wire out of them, since wires are actually lists of edges.

</translate>
 myFaceProfile=Part.Face(myWireProfile)

 aPrismVec=Base.Vector(0,0,myHeight)

 myBody=myFaceProfile.extrude(aPrismVec)

 myBody=myBody.makeFillet(myThickness/12.0,myBody.Edges)

<translate>
Now that we have a closed wire, it can be turned into a face. Once we have a
face, we can extrude it. Doing so, we actually made a solid. Then we apply a
nice little fillet to our object because we care about good design, don't we?

</translate>

Manual - FreeCAD Documentation

119 von 244

 neckLocation=Base.Vector(0,0,myHeight)

 neckNormal=Base.Vector(0,0,1)

 myNeckRadius = myThickness / 4.

 myNeckHeight = myHeight / 10

 myNeck = Part.makeCylinder(myNeckRadius,myNeckHeight,neckLocation,neckNormal)

<translate>
Then, the body of our bottle is made, we still need to create a neck. So we
make a new solid, with a cylinder.

</translate>
 myBody = myBody.fuse(myNeck)

<translate>
The fuse operation, which in other apps is sometimes called union, is very
powerful. It will take care of gluing what needs to be glued and remove parts
that need to be removed.

</translate>
return myBody

<translate>
Then, we return our Part solid as the result of our function. That Part solid, like
any other Part shape, can be attributed to an object in a FreeCAD document,
with:

</translate>
myObject = FreeCAD.ActiveDocument.addObject("Part::Feature","myObject")

myObject.Shape = bottle

<translate>
or, more simple:

</translate>
Part.show(bottle)

<translate>

Box pierced
Here a complete example of building a box pierced.

The construction is done side by side and when the cube is finished, it is
hollowed out of a cylinder through.

</translate>

Manual - FreeCAD Documentation

120 von 244

import Draft, Part, FreeCAD, math, PartGui, FreeCADGui, PyQt4

from math import sqrt, pi, sin, cos, asin

from FreeCAD import Base

size = 10

poly = Part.makePolygon([(0,0,0), (size, 0, 0), (size, 0, size), (0, 0, size), (0, 0, 0

face1 = Part.Face(poly)

face2 = Part.Face(poly)

face3 = Part.Face(poly)

face4 = Part.Face(poly)

face5 = Part.Face(poly)

face6 = Part.Face(poly)

myMat = FreeCAD.Matrix()

myMat.rotateZ(math.pi/2)

face2.transformShape(myMat)

face2.translate(FreeCAD.Vector(size, 0, 0))

myMat.rotateZ(math.pi/2)

face3.transformShape(myMat)

face3.translate(FreeCAD.Vector(size, size, 0))

myMat.rotateZ(math.pi/2)

face4.transformShape(myMat)

face4.translate(FreeCAD.Vector(0, size, 0))

myMat = FreeCAD.Matrix()

myMat.rotateX(-math.pi/2)

face5.transformShape(myMat)

face6.transformShape(myMat)

face6.translate(FreeCAD.Vector(0,0,size))

myShell = Part.makeShell([face1,face2,face3,face4,face5,face6])

mySolid = Part.makeSolid(myShell)

mySolidRev = mySolid.copy()

mySolidRev.reverse()

myCyl = Part.makeCylinder(2,20)

myCyl.translate(FreeCAD.Vector(size/2, size/2, 0))

cut_part = mySolidRev.cut(myCyl)

Part.show(cut_part)

<translate>

Loading and Saving
There are several ways to save your work in the Part module. You can of course
save your FreeCAD document, but you can also save Part objects directly to
common CAD formats, such as BREP, IGS, STEP and STL.

Saving a shape to a file is easy. There are exportBrep(), exportIges(), exportStl()
and exportStep() methods availables for all shape objects. So, doing:

</translate>
import Part

s = Part.makeBox(0,0,0,10,10,10)

s.exportStep("test.stp")

<translate>
this will save our box into a STEP file. To load a BREP, IGES or STEP file, simply
do the contrary:

</translate>

Manual - FreeCAD Documentation

121 von 244

< previous: Mesh Scripting (/wiki/index.php?title=Mesh_Scripting)
next: Mesh to Part > (/wiki/index.php?title=Mesh_to_Part)

import Part

s = Part.Shape()

s.read("test.stp")

<translate>
To convert an .stp in .igs file simply :

</translate>
import Part

 s = Part.Shape()

 s.read("file.stp") # incoming file igs, stp, stl, brep

 s.exportIges("file.igs") # outbound file igs

<translate>
Note that importing or opening BREP, IGES or STEP files can also be done
directly from the File -> Open or File -> Import menu, while exporting is with
File -> Export

Index
(/wiki/index.php?title=Online_Help_Toc)

</translate>

<translate>

Converting Part objects to Meshes
Converting higher-level objects such as Part shapes (/wiki
/index.php?title=Part_Module) into simpler objects such as meshes (/wiki
/index.php?title=Mesh_Module) is a pretty simple operation, where all faces of
a Part object get triangulated. The result of that triangulation (tessellation) is
then used to construct a mesh: (let's assume our document contains one part
object) </translate>

#let's assume our document contains one part object

import Mesh

faces = []

shape = FreeCAD.ActiveDocument.ActiveObject.Shape

triangles = shape.tessellate(1) # the number represents the precision of the tessellation)

for tri in triangles[1]:

 face = []

for i in range(3):

 vindex = tri[i]

 face.append(triangles[0][vindex])

 faces.append(face)

m = Mesh.Mesh(faces)

Mesh.show(m)

<translate> Sometimes the triangulation of certain faces offered by
OpenCascade is quite ugly. If the face has a rectangular parameter space and
doesn't contain any holes or other trimming curves you can also create a mesh
on your own: </translate>

Manual - FreeCAD Documentation

122 von 244

import Mesh

def makeMeshFromFace(u,v,face):

(a,b,c,d)=face.ParameterRange

pts=[]

for j in range(v):

for i in range(u):

s=1.0/(u-1)*(i*b+(u-1-i)*a)

t=1.0/(v-1)*(j*d+(v-1-j)*c)

pts.append(face.valueAt(s,t))

mesh=Mesh.Mesh()

for j in range(v-1):

for i in range(u-1):

mesh.addFacet(pts[u*j+i],pts[u*j+i+1],pts[u*(j+1)+i])

mesh.addFacet(pts[u*(j+1)+i],pts[u*j+i+1],pts[u*(j+1)+i+1])

return mesh

<translate>

Converting Meshes to Part objects
Converting Meshes to Part objects is an extremely important operation in CAD
work, because very often you receive 3D data in mesh format from other
people or outputted from other applications. Meshes are very practical to
represent free-form geometry and big visual scenes, as it is very lightweight,
but for CAD we generally prefer higher-level objects that carry much more
information, such as the idea of solid, or faces made of curves instead of
triangles.

Converting meshes to those higher-level objects (handled by the Part Module
(/wiki/index.php?title=Part_Module) in FreeCAD) is not an easy operation.
Meshes can be made of thousands of triangles (for example when generated
by a 3D scanner), and having solids made of the same number of faces would
be extremely heavy to manipulate. So you generally want to optimize the
object when converting.

FreeCAD currently offers two methods to convert Meshes to Part objects. The
first method is a simple, direct conversion, without any optimization:
</translate>

import Mesh,Part

mesh = Mesh.createTorus()

shape = Part.Shape()

shape.makeShapeFromMesh(mesh.Topology,0.05) # the second arg is the tolerance for sewing

solid = Part.makeSolid(shape)

Part.show(solid)

<translate> The second method offers the possibility to consider mesh facets
coplanar when the angle between them is under a certain value. This allows to
build much simpler shapes: (let's assume our document contains one Mesh
object) </translate>

Manual - FreeCAD Documentation

123 von 244

< previous: Topological data scripting (/wiki
/index.php?title=Topological_data_scripting)

next: Scenegraph > (/wiki/index.php?title=Scenegraph)

let's assume our document contains one Mesh object

import Mesh,Part,MeshPart

faces = []

mesh = App.ActiveDocument.ActiveObject.Mesh

segments = mesh.getPlanes(0.00001) # use rather strict tolerance here

for i in segments:

if len(i) > 0:

a segment can have inner holes

 wires = MeshPart.wireFromSegment(mesh, i)

we assume that the exterior boundary is that one with the biggest bounding box

if len(wires) > 0:

 ext=None

 max_length=0

for i in wires:

if i.BoundBox.DiagonalLength > max_length:

 max_length = i.BoundBox.DiagonalLength

 ext = i

 wires.remove(ext)

all interior wires mark a hole and must reverse their orientation, otherwise Part.Face fails

for i in wires:

 i.reverse()

make sure that the exterior wires comes as first in the lsit

 wires.insert(0, ext)

 faces.append(Part.Face(wires))

shell=Part.Compound(faces)

Part.show(shell)

#solid = Part.Solid(Part.Shell(faces))

#Part.show(solid)

<translate>

Index (/wiki
/index.php?title=Online_Help_Toc)

</translate>

<translate> FreeCAD is basically a collage of different powerful libraries, the
most important being openCascade (http://en.wikipedia.org
/wiki/Open_CASCADE), for managing and constructing geometry, Coin3d
(http://en.wikipedia.org/wiki/Coin3D) to display that geometry, and Qt
(http://en.wikipedia.org/wiki/Qt_(toolkit)) to put all this in a nice Graphical
User Interface.

The geometry that appears in the 3D views of FreeCAD are rendered by the
Coin3D library. Coin3D is an implementation of the OpenInventor
(http://en.wikipedia.org/wiki/Open_Inventor) standard. The openCascade
software also provides the same functionality, but it was decided, at the very
beginnings of FreeCAD, not to use the built-in openCascade viewer and rather
switch to the more performant coin3D software. A good way to learn about that
library is the book Open Inventor Mentor (http://www-evasion.imag.fr
/Membres/Francois.Faure/doc/inventorMentor/sgi_html/).

OpenInventor (http://en.wikipedia.org/wiki/Open_Inventor) is actually a 3D
scene description language. The scene described in openInventor is then
rendered in OpenGL on your screen. Coin3D takes care of doing this, so the
programmer doesn't need to deal with complex openGL calls, he just has to
provide it with valid OpenInventor code. The big advantage is that
openInventor is a very well-known and well documented standard.

One of the big jobs FreeCAD does for you is basically to translate openCascade

Manual - FreeCAD Documentation

124 von 244

geometry information into openInventor language.

OpenInventor describes a 3D scene in the form of a scenegraph
(http://en.wikipedia.org/wiki/Scene_graph), like the one below:

 (/wiki

/index.php?title=File:Scenegraph.gif) image from Inventor mentor
(http://www-evasion.imag.fr/~Francois.Faure/doc/inventorMentor/sgi_html
/index.html)

An openInventor scenegraph describes everything that makes part of a 3D
scene, such as geometry, colors, materials, lights, etc, and organizes all that
data in a convenient and clear structure. Everything can be grouped into
sub-structures, allowing you to organize your scene contents pretty much the
way you like. Here is an example of an openInventor file: </translate>

#Inventor V2.0 ascii

Separator {

RotationXYZ {

 axis Z

 angle 0

}

Transform {

 translation 0 0 0.5

}

Separator {

Material {

 diffuseColor 0.05 0.05 0.05

}

Transform {

 rotation 1 0 0 1.5708

 scaleFactor 0.2 0.5 0.2

}

Cylinder {

}

}

}

<translate>

As you can see, the structure is very simple. You use separators to organize
your data into blocks, a bit like you would organize your files into folders. Each
statement affects what comes next, for example the first two items of our root
separator are a rotation and a translation, both will affect the next item, which
is a separator. In that separator, a material is defined, and another

Manual - FreeCAD Documentation

125 von 244

< previous: Mesh to Part (/wiki/index.php?title=Mesh_to_Part)
next: Pivy > (/wiki/index.php?title=Pivy)

transformation. Our cylinder will therefore be affected by both
transformations, the one who was applied directly to it and the one that was
applied to its parent separator.

We also have many other types of elements to organize our scene, such as
groups, switches or annotations. We can define very complex materials for our
objects, with color, textures, shading modes and transparency. We can also
define lights, cameras, and even movement. It is even possible to embed
pieces of scripting in openInventor files, to define more complex behaviours.

If you are interested in learning more about openInventor, head directly to its
most famous reference, the Inventor mentor (http://www-evasion.imag.fr
/~Francois.Faure/doc/inventorMentor/sgi_html/index.html).

In FreeCAD, normally, we don't need to interact directly with the openInventor
scenegraph. Every object in a FreeCAD document, being a mesh, a part shape
or anything else, gets automatically converted to openInventor code and
inserted in the main scenegraph that you see in a 3D view. That scenegraph
gets updated continuously when you do modifications, add or remove objects
to the document. In fact, every object (in App space) has a view provider (a
corresponding object in Gui space), responsible for issuing openInventor code.

But there are many advantages to be able to access the scenegraph directly.
For example, we can temporarily change the appearence of an object, or we
can add objects to the scene that have no real existence in the FreeCAD
document, such as construction geometry, helpers, graphical hints or tools
such as manipulators or on-screen information.

FreeCAD itself features several tools to see or modify openInventor code. For
example, the following python code will show the openInventor representation
of a selected object: </translate>

obj = FreeCAD.ActiveDocument.ActiveObject

viewprovider = obj.ViewObject

print viewprovider.toString()

<translate> But we also have a python module that allows complete access to
anything managed by Coin3D, such as our FreeCAD scenegraph. So, read on to
Pivy (/wiki/index.php?title=Pivy).

Index
(/wiki

/index.php?title=Online_Help_Toc)
</translate>

<translate> Pivy (http://pivy.coin3d.org/) is a python binding library for Coin3d
(http://www.coin3d.org), the 3D-rendering library used in FreeCAD. When
imported in a running python interpreter, it allows to dialog directly with any
running Coin3d scenegraphs (/wiki/index.php?title=Scenegraph), such as the
FreeCAD 3D views, or even to create new ones. Pivy is bundled in standard
FreeCAD installation.

The coin library is divided into several pieces, coin itself, for manipulating
scenegraphs and bindings for several GUI systems, such as windows or, like in
our case, qt. Those modules are available to pivy too, depending if they are
present on the system. The coin module is always present, and it is what we
will use anyway, since we won't need to care about anchoring our 3D display in
any interface, it is already done by FreeCAD itself. All we need to do is this:
</translate>

Manual - FreeCAD Documentation

126 von 244

from pivy import coin

<translate>

Accessing and modifying the scenegraph
We saw in the Scenegraph (/wiki/index.php?title=Scenegraph) page how a
typical Coin scene is organized. Everything that appears in a FreeCAD 3D view is
a coin scenegraph, organized the same way. We have one root node, and all
objects on the screen are its children.

FreeCAD has an easy way to access the root node of a 3D view scenegraph:
</translate>

sg = FreeCADGui.ActiveDocument.ActiveView.getSceneGraph()

print sg

<translate> This will return the root node: </translate>

<pivy.coin.SoSelection; proxy of <Swig Object of type 'SoSelection *' at 0x360cb60> >

<translate> We can inspect the immediate children of our scene: </translate>

for node in sg.getChildren():

print node

<translate> Some of those nodes, such as SoSeparators or SoGroups, can have
children themselves. The complete list of the available coin objects can be
found in the official coin documentation (http://coin3d.bitbucket.org
/Coin/classes.html).

Let's try to add something to our scenegraph now. We'll add a nice red cube:
</translate>

col = coin.SoBaseColor()

col.rgb=(1,0,0)

cub = coin.SoCube()

myCustomNode = coin.SoSeparator()

myCustomNode.addChild(col)

myCustomNode.addChild(cub)

sg.addChild(myCustomNode)

<translate> and here is our (nice) red cube. Now, let's try this: </translate>

col.rgb=(1,1,0)

<translate> See? everything is still accessible and modifiable on-the-fly. No
need to recompute or redraw anything, coin takes care of everything. You can
add stuff to your scenegraph, change properties, hide stuff, show temporary
objects, anything. Of course, this only concerns the display in the 3D view. That
display gets recomputed by FreeCAD on file open, and when an object needs
recomputing. So, if you change the aspect of an existing FreeCAD object, those
changes will be lost if the object gets recomputed or when you reopen the file.

A key to work with scenegraphs in your scripts is to be able to access certain
properties of the nodes you added when needed. For example, if we wanted to
move our cube, we would have added a SoTranslation node to our custom
node, and it would have looked like this: </translate>

Manual - FreeCAD Documentation

127 von 244

col = coin.SoBaseColor()

col.rgb=(1,0,0)

trans = coin.SoTranslation()

trans.translation.setValue([0,0,0])

cub = coin.SoCube()

myCustomNode = coin.SoSeparator()

myCustomNode.addChild(col)

mtCustomNode.addChild(trans)

myCustomNode.addChild(cub)

sg.addChild(myCustomNode)

<translate> Remember that in an openInventor scenegraph, the order is
important. A node affects what comes next, so you can say something like:
color red, cube, color yellow, sphere, and you will get a red cube and a yellow
sphere. If we added the translation now to our existing custom node, it would
come after the cube, and not affect it. If we had inserted it when creating it,
like here above, we could now do: </translate>

trans.translation.setValue([2,0,0])

<translate> And our cube would jump 2 units to the right. Finally, removing
something is done with: </translate>

sg.removeChild(myCustomNode)

<translate>

Using callback mechanisms
A callback mechanism (http://en.wikipedia.org
/wiki/Callback_%28computer_science%29) is a system that permits a library
that you are using, such as our coin library, to call you back, that is, to call a
certain function from your currently running python object. This is extremely
useful, because that way coin can notify you if some specific event occurs in
the scene. Coin can watch very different things, such as mouse position, clicks
of a mouse button, keyboard keys being pressed, and many other things.

FreeCAD features an easy way to use such callbacks: </translate>

class ButtonTest:

def __init__(self):

self.view = FreeCADGui.ActiveDocument.ActiveView

self.callback = self.view.addEventCallbackPivy(SoMouseButtonEvent.getClassTypeId(),self

def getMouseClick(self,event_cb):

event = event_cb.getEvent()

if event.getState() == SoMouseButtonEvent.DOWN:

print "Alert!!! A mouse button has been improperly clicked!!!"

self.view.removeEventCallbackSWIG(SoMouseButtonEvent.getClassTypeId(),self.callback

ButtonTest()

<translate> The callback has to be initiated from an object, because that object
must still be running when the callback will occur. See also a complete list
(/wiki
/index.php?title=Code_snippets#Observing_mouse_events_in_the_3D_viewer_via_Python)
of possible events and their parameters, or the official coin documentation
(http://doc.coin3d.org/Coin/classes.html).

Documentation
Unfortunately pivy itself still doesn't have a proper documentation, but since it
is an accurate translation of coin, you can safely use the coin documentation
as reference, and use python style instead of c++ style (for example

Manual - FreeCAD Documentation

128 von 244

< previous: Scenegraph (/wiki/index.php?title=Scenegraph)
next: PySide > (/wiki/index.php?title=PySide)

SoFile::getClassTypeId() would in pivy be SoFile.getClassId())

Index
(/wiki

/index.php?title=Online_Help_Toc)
</translate>

<translate>

PySide
PySide (http://en.wikipedia.org/wiki/PySide) is a Python binding of the cross-
platform GUI toolkit Qt. FreeCAD uses PySide for all GUI (Graphic User
Interface) purposes. PySide evolved from the PyQt package which was
previously used by FreeCAD for its GUI. See Differences Between PySide and
PyQt (http://qt-project.org/wiki/Differences_Between_PySide_and_PyQt) for
more information on the differences.

Users of FreeCAD often achieve everything using the built-in interface. But for
users who want to customise their operations then the Python interface exists
which is documented in the Python Scripting Tutorial (/wiki
/index.php?title=Python_scripting_tutorial). The Python interface for FreeCAD
had great flexibility and power. For its user interaction Python with FreeCAD
uses PySide, which is what is documented on this page.

Python offers the 'print' statement which gives the code: </translate>

print 'Hello World'

<translate> With Python's print statement you have only limited control of the
appearance and behaviour. PySide supplies the missing control and also
handles environments (such as the FreeCAD macro file environment) where the
built-in facilities of Python are not enough.

PySide's abilities range from:

 (/wiki

/index.php?title=File:PySideScreenSnapshot1.jpg)

to:

 (/wiki

Manual - FreeCAD Documentation

129 von 244

< previous: Pivy (/wiki/index.php?title=Pivy)
next: Scripted objects > (/wiki/index.php?title=Scripted_objects)

/index.php?title=File:PySideScreenSnapshot2.jpg)

PySide is described in the following 3 pages which should follow on one from
each other:

Beginner PySide Examples (/wiki
/index.php?title=PySide_Beginner_Examples) (Hello World,
announcements, enter text, enter number)
Medium PySide Examples (/wiki
/index.php?title=PySide_Medium_Examples) (window sizing, hiding
widgets, popup menus, mouse position, mouse events)
Advanced PySide Examples (/wiki
/index.php?title=PySide_Advanced_Examples) (widgets etc.)

They divide the subject matter into 3 parts, differentiated by level of exposure
to PySide, Python and the FreeCAD internals. The first page has overview and
background material giving a description of PySide and how it is put together
while the second and third pages are mostly code examples at different levels.

The intention is that the associated pages will provide simple Python code to
run PySide so that the user working on a problem can easily copy the code,
paste it into their own work, adapt it as necessary and return to their problem
solving with FreeCAD. Hopefully they don't have to go chasing off across the
internet looking for answers to PySide questions. At the same time this page is
not intended to replace the various comprehensive PySide tutorials and
reference sites available on the web.

Index (/wiki

/index.php?title=Online_Help_Toc)
</translate>

Besides the standard object types such as annotations, meshes and parts
objects, FreeCAD also offers the amazing possibility to build 100% python-
scripted objects, called Python Features. Those objects will behave exactly as
any other FreeCAD object, and are saved and restored automatically on file
save/load.

One particularity must be understood, those objects are saved in FreeCAD
FcStd files with python's json (http://docs.python.org/2/library/json.html)
module. That module turns a python object as a string, allowing it to be added
to the saved file. On load, the json module uses that string to recreate the
original object, provided it has access to the source code that created the
object. This means that if you save such a custom object and open it on a
machine where the python code that generated the object is not present, the
object won't be recreated. If you distribute such objects to others, you will
need to distribute the python script that created it together.

Python Features follow the same rule as all FreeCAD features: they are
separated into App and GUI parts. The app part, the Document Object, defines
the geometry of our object, while its GUI part, the View Provider Object, defines
how the object will be drawn on screen. The View Provider Object, as any other
FreeCAD feature, is only available when you run FreeCAD in its own GUI. There
are several properties and methods available to build your object. Properties
must be of any of the predefined properties types that FreeCAD offers, and will
appear in the property view window, so they can be edited by the user. This
way, FeaturePython objects are truly and totally parametric. you can define
properties for the Object and its ViewObject separately.

Manual - FreeCAD Documentation

130 von 244

Hint: In former versions we used Python's cPickle (http://docs.python.org
/release/2.5/lib/module-cPickle.html) module. However, this module executes
arbitrary code and thus causes a security problem. Thus, we moved to Python's
json module.

Basic example
The following sample can be found in the src/Mod/TemplatePyMod
/FeaturePython.py (https://github.com/FreeCAD/FreeCAD/blob/master
/src/Mod/TemplatePyMod/FeaturePython.py) file, together with several other
examples:

Manual - FreeCAD Documentation

131 von 244

'''Examples for a feature class and its view provider.'''

import FreeCAD, FreeCADGui

from pivy import coin

class Box:

def __init__(self, obj):

'''Add some custom properties to our box feature'''

 obj.addProperty("App::PropertyLength","Length","Box","Length of the box").Length=

 obj.addProperty("App::PropertyLength","Width","Box","Width of the box").Width=1.0

 obj.addProperty("App::PropertyLength","Height","Box", "Height of the box").Height

 obj.Proxy = self

def onChanged(self, fp, prop):

'''Do something when a property has changed'''

FreeCAD.Console.PrintMessage("Change property: " + str(prop) + "\n")

def execute(self, fp):

'''Do something when doing a recomputation, this method is mandatory'''

FreeCAD.Console.PrintMessage("Recompute Python Box feature\n")

class ViewProviderBox:

def __init__(self, obj):

'''Set this object to the proxy object of the actual view provider'''

 obj.addProperty("App::PropertyColor","Color","Box","Color of the box").Color=(1.0

 obj.Proxy = self

def attach(self, obj):

'''Setup the scene sub-graph of the view provider, this method is mandatory'''

self.shaded = coin.SoGroup()

self.wireframe = coin.SoGroup()

self.scale = coin.SoScale()

self.color = coin.SoBaseColor()

 data=coin.SoCube()

self.shaded.addChild(self.scale)

self.shaded.addChild(self.color)

self.shaded.addChild(data)

 obj.addDisplayMode(self.shaded,"Shaded");

 style=coin.SoDrawStyle()

 style.style = coin.SoDrawStyle.LINES

self.wireframe.addChild(style)

self.wireframe.addChild(self.scale)

self.wireframe.addChild(self.color)

self.wireframe.addChild(data)

 obj.addDisplayMode(self.wireframe,"Wireframe");

self.onChanged(obj,"Color")

def updateData(self, fp, prop):

'''If a property of the handled feature has changed we have the chance to handle this here'''

fp is the handled feature, prop is the name of the property that has changed

 l = fp.getPropertyByName("Length")

 w = fp.getPropertyByName("Width")

 h = fp.getPropertyByName("Height")

self.scale.scaleFactor.setValue(float(l),float(w),float(h))

pass

def getDisplayModes(self,obj):

'''Return a list of display modes.'''

 modes=[]

 modes.append("Shaded")

 modes.append("Wireframe")

return modes

def getDefaultDisplayMode(self):

'''Return the name of the default display mode. It must be defined in getDisplayModes.'''

return "Shaded"

def setDisplayMode(self,mode):

'''Map the display mode defined in attach with those defined in getDisplayModes.\

 Since they have the same names nothing needs to be done. This method is optional'''

return mode

def onChanged(self, vp, prop):

'''Here we can do something when a single property got changed'''

Manual - FreeCAD Documentation

132 von 244

FreeCAD.Console.PrintMessage("Change property: " + str(prop) + "\n")

if prop == "Color":

 c = vp.getPropertyByName("Color")

self.color.rgb.setValue(c[0],c[1],c[2])

def getIcon(self):

'''Return the icon in XPM format which will appear in the tree view. This method is\

 optional and if not defined a default icon is shown.'''

return """

 /* XPM */

 static const char * ViewProviderBox_xpm[] = {

 "16 16 6 1",

 " c None",

 ". c #141010",

"+ c #615BD2",

"@ c #C39D55",

"# c #000000",

"$ c #57C355",

" ",

" ++..+..",

" .@@@@.++..++.",

" .@@@@.++..++.",

" .@@ .++++++.",

" ..@@ .++..++.",

"###@@@@ .++..++.",

"##$.@@$#.++++++.",

"#$#$.$$$........",

"#$$####### ",

"#$$#$$$$$# ",

"#$$#$$$$$# ",

"#$$#$$$$$# ",

" #$#$$$$$# ",

" ##$$$$$# ",

" ####### "};

"""

 def __getstate__(self):

 '''When saving the document this object gets stored using Python's json module.\

 Since we have some un-serializable parts here -- the Coin stuff -- we must define this me

 to return a tuple of all serializable objects or None.'''

 return None

 def __setstate__(self,state):

 '''When restoring the serialized object from document we have the chance to set some internals he

 Since no data were serialized nothing needs to be done here.'''

 return None

def makeBox():

 FreeCAD.newDocument()

 a=FreeCAD.ActiveDocument.addObject("App::FeaturePython","Box")

 Box(a)

 ViewProviderBox(a.ViewObject)

makeBox()

Available properties
Properties are the true building stones of FeaturePython objects. Through
them, the user will be able to interact and modify your object. After creating a
new FeaturePython object in your document (
obj=FreeCAD.ActiveDocument.addObject("App::FeaturePython","Box")), you can
get a list of the available properties by issuing:

obj.supportedProperties()

You will get a list of available properties:

Manual - FreeCAD Documentation

133 von 244

App::PropertyBool

App::PropertyBoolList

App::PropertyFloat

App::PropertyFloatList

App::PropertyFloatConstraint

App::PropertyQuantity

App::PropertyQuantityConstraint

App::PropertyAngle

App::PropertyDistance

App::PropertyLength

App::PropertySpeed

App::PropertyAcceleration

App::PropertyForce

App::PropertyPressure

App::PropertyInteger

App::PropertyIntegerConstraint

App::PropertyPercent

App::PropertyEnumeration

App::PropertyIntegerList

App::PropertyIntegerSet

App::PropertyMap

App::PropertyString

App::PropertyUUID

App::PropertyFont

App::PropertyStringList

App::PropertyLink

App::PropertyLinkSub

App::PropertyLinkList

App::PropertyLinkSubList

App::PropertyMatrix

App::PropertyVector

App::PropertyVectorList

App::PropertyPlacement

App::PropertyPlacementLink

App::PropertyColor

App::PropertyColorList

App::PropertyMaterial

App::PropertyPath

App::PropertyFile

App::PropertyFileIncluded

App::PropertyPythonObject

Part::PropertyPartShape

Part::PropertyGeometryList

Part::PropertyShapeHistory

Part::PropertyFilletEdges

Sketcher::PropertyConstraintList

When adding properties to your custom objects, take care of this:

Do not use characters "<" or ">" in the properties descriptions (that would
break the xml pieces in the .fcstd file)
Properties are stored alphabetically in a .fcstd file. If you have a shape in
your properties, any property whose name comes after "Shape" in
alphabetic order, will be loaded AFTER the shape, which can cause strange
behaviours.

Property Type
By default the properties can be updated. It is possible to make the properties
read-only, for instance in the case one wants to show the result of a method. It
is also possible to hide the property. The property type can be set using

obj.setEditorMode("MyPropertyName", mode)

where mode is a short int that can be set to:

Manual - FreeCAD Documentation

134 von 244

0 -- default mode, read and write

1 -- read-only

2 -- hidden

The EditorModes are not set at FreeCAD file reload. This could to be done by
the __setstate__ function. See http://forum.freecadweb.org
/viewtopic.php?f=18&t=13460&start=10#p108072 (http://forum.freecadweb.org
/viewtopic.php?f=18&t=13460&start=10#p108072). By using the setEditorMode
the properties are only read only in PropertyEditor. They could still be changed
from python. To really make them read only the setting has to be passed
directly inside the addProperty function. See http://forum.freecadweb.org
/viewtopic.php?f=18&t=13460&start=20#p109709 (http://forum.freecadweb.org
/viewtopic.php?f=18&t=13460&start=20#p109709) for an example.

Other more complex example
This example makes use of the Part Module (/wiki
/index.php?title=Part_Module) to create an octahedron, then creates its coin
representation with pivy.

First is the Document object itself:

import FreeCAD, FreeCADGui, Part

import pivy

from pivy import coin

class Octahedron:

def __init__(self, obj):

"Add some custom properties to our box feature"

 obj.addProperty("App::PropertyLength","Length","Octahedron","Length of the octahedron"

 obj.addProperty("App::PropertyLength","Width","Octahedron","Width of the octahedron"

 obj.addProperty("App::PropertyLength","Height","Octahedron", "Height of the octahedron"

 obj.addProperty("Part::PropertyPartShape","Shape","Octahedron", "Shape of the octahedron"

 obj.Proxy = self

def execute(self, fp):

Define six vetices for the shape

 v1 = FreeCAD.Vector(0,0,0)

 v2 = FreeCAD.Vector(fp.Length,0,0)

 v3 = FreeCAD.Vector(0,fp.Width,0)

 v4 = FreeCAD.Vector(fp.Length,fp.Width,0)

 v5 = FreeCAD.Vector(fp.Length/2,fp.Width/2,fp.Height/2)

 v6 = FreeCAD.Vector(fp.Length/2,fp.Width/2,-fp.Height/2)

Make the wires/faces

 f1 = self.make_face(v1,v2,v5)

 f2 = self.make_face(v2,v4,v5)

 f3 = self.make_face(v4,v3,v5)

 f4 = self.make_face(v3,v1,v5)

 f5 = self.make_face(v2,v1,v6)

 f6 = self.make_face(v4,v2,v6)

 f7 = self.make_face(v3,v4,v6)

 f8 = self.make_face(v1,v3,v6)

 shell=Part.makeShell([f1,f2,f3,f4,f5,f6,f7,f8])

 solid=Part.makeSolid(shell)

 fp.Shape = solid

helper mehod to create the faces

def make_face(self,v1,v2,v3):

 wire = Part.makePolygon([v1,v2,v3,v1])

 face = Part.Face(wire)

return face

Then, we have the view provider object, responsible for showing the object in
the 3D scene:

Manual - FreeCAD Documentation

135 von 244

class ViewProviderOctahedron:

def __init__(self, obj):

"Set this object to the proxy object of the actual view provider"

 obj.addProperty("App::PropertyColor","Color","Octahedron","Color of the octahedron").

 obj.Proxy = self

def attach(self, obj):

"Setup the scene sub-graph of the view provider, this method is mandatory"

self.shaded = coin.SoGroup()

self.wireframe = coin.SoGroup()

self.scale = coin.SoScale()

self.color = coin.SoBaseColor()

self.data=coin.SoCoordinate3()

self.face=coin.SoIndexedLineSet()

self.shaded.addChild(self.scale)

self.shaded.addChild(self.color)

self.shaded.addChild(self.data)

self.shaded.addChild(self.face)

 obj.addDisplayMode(self.shaded,"Shaded");

 style=coin.SoDrawStyle()

 style.style = coin.SoDrawStyle.LINES

self.wireframe.addChild(style)

self.wireframe.addChild(self.scale)

self.wireframe.addChild(self.color)

self.wireframe.addChild(self.data)

self.wireframe.addChild(self.face)

 obj.addDisplayMode(self.wireframe,"Wireframe");

self.onChanged(obj,"Color")

def updateData(self, fp, prop):

"If a property of the handled feature has changed we have the chance to handle this here"

fp is the handled feature, prop is the name of the property that has changed

if prop == "Shape":

 s = fp.getPropertyByName("Shape")

self.data.point.setNum(6)

 cnt=0

for i in s.Vertexes:

self.data.point.set1Value(cnt,i.X,i.Y,i.Z)

 cnt=cnt+1

self.face.coordIndex.set1Value(0,0)

self.face.coordIndex.set1Value(1,1)

self.face.coordIndex.set1Value(2,2)

self.face.coordIndex.set1Value(3,-1)

self.face.coordIndex.set1Value(4,1)

self.face.coordIndex.set1Value(5,3)

self.face.coordIndex.set1Value(6,2)

self.face.coordIndex.set1Value(7,-1)

self.face.coordIndex.set1Value(8,3)

self.face.coordIndex.set1Value(9,4)

self.face.coordIndex.set1Value(10,2)

self.face.coordIndex.set1Value(11,-1)

self.face.coordIndex.set1Value(12,4)

self.face.coordIndex.set1Value(13,0)

self.face.coordIndex.set1Value(14,2)

self.face.coordIndex.set1Value(15,-1)

self.face.coordIndex.set1Value(16,1)

self.face.coordIndex.set1Value(17,0)

self.face.coordIndex.set1Value(18,5)

self.face.coordIndex.set1Value(19,-1)

self.face.coordIndex.set1Value(20,3)

self.face.coordIndex.set1Value(21,1)

self.face.coordIndex.set1Value(22,5)

self.face.coordIndex.set1Value(23,-1)

self.face.coordIndex.set1Value(24,4)

self.face.coordIndex.set1Value(25,3)

self.face.coordIndex.set1Value(26,5)

Manual - FreeCAD Documentation

136 von 244

self.face.coordIndex.set1Value(27,-1)

self.face.coordIndex.set1Value(28,0)

self.face.coordIndex.set1Value(29,4)

self.face.coordIndex.set1Value(30,5)

self.face.coordIndex.set1Value(31,-1)

def getDisplayModes(self,obj):

"Return a list of display modes."

 modes=[]

 modes.append("Shaded")

 modes.append("Wireframe")

return modes

def getDefaultDisplayMode(self):

"Return the name of the default display mode. It must be defined in getDisplayModes."

return "Shaded"

def setDisplayMode(self,mode):

return mode

def onChanged(self, vp, prop):

"Here we can do something when a single property got changed"

FreeCAD.Console.PrintMessage("Change property: " + str(prop) + "\n")

if prop == "Color":

 c = vp.getPropertyByName("Color")

self.color.rgb.setValue(c[0],c[1],c[2])

def getIcon(self):

return """

 /* XPM */

 static const char * ViewProviderBox_xpm[] = {

 "16 16 6 1",

 " c None",

 ". c #141010",

"+ c #615BD2",

"@ c #C39D55",

"# c #000000",

"$ c #57C355",

" ",

" ++..+..",

" .@@@@.++..++.",

" .@@@@.++..++.",

" .@@ .++++++.",

" ..@@ .++..++.",

"###@@@@ .++..++.",

"##$.@@$#.++++++.",

"#$#$.$$$........",

"#$$####### ",

"#$$#$$$$$# ",

"#$$#$$$$$# ",

"#$$#$$$$$# ",

" #$#$$$$$# ",

" ##$$$$$# ",

" ####### "};

"""

 def __getstate__(self):

 return None

 def __setstate__(self,state):

 return None

Finally, once our object and its viewobject are defined, we just need to call
them:

FreeCAD.newDocument()

a=FreeCAD.ActiveDocument.addObject("App::FeaturePython","Octahedron")

Octahedron(a)

ViewProviderOctahedron(a.ViewObject)

Making objects selectable

Manual - FreeCAD Documentation

137 von 244

If you want to make your object selectable, or at least part of it, by clicking on
it in the viewport, you must include its coin geometry inside a SoFCSelection
node. If your object has complex representation, with widgets, annotations,
etc, you might want to include only a part of it in a SoFCSelection. Everything
that is a SoFCSelection is constantly scanned by FreeCAD to detect
selection/preselection, so it makes sense try not to overload it with unneeded
scanning. This is what you would do to include a self.face from the example
above:

selectionNode = coin.SoType.fromName("SoFCSelection").createInstance()

selectionNode.documentName.setValue(FreeCAD.ActiveDocument.Name)

selectionNode.objectName.setValue(obj.Object.Name) # here obj is the ViewObject, we need its associated A

selectionNode.subElementName.setValue("Face")

selectNode.addChild(self.face)

...

self.shaded.addChild(selectionNode)

self.wireframe.addChild(selectionNode)

Simply, you create a SoFCSelection node, then you add your geometry nodes to
it, then you add it to your main node, instead of adding your geometry nodes
directly.

Working with simple shapes
If your parametric object simply outputs a shape, you don't need to use a view
provider object. The shape will be displayed using FreeCAD's standard shape
representation:

import FreeCAD as App

import FreeCADGui

import FreeCAD

import Part

class Line:

def __init__(self, obj):

'''"App two point properties" '''

 obj.addProperty("App::PropertyVector","p1","Line","Start point")

 obj.addProperty("App::PropertyVector","p2","Line","End point").p2=FreeCAD.Vector(

 obj.Proxy = self

def execute(self, fp):

'''"Print a short message when doing a recomputation, this method is mandatory" '''

 fp.Shape = Part.makeLine(fp.p1,fp.p2)

a=FreeCAD.ActiveDocument.addObject("Part::FeaturePython","Line")

Line(a)

a.ViewObject.Proxy=0 # just set it to something different from None (this assignment is needed to run an

FreeCAD.ActiveDocument.recompute()

Same code with use ViewProviderLine

Manual - FreeCAD Documentation

138 von 244

< previous: PySide (/wiki/index.php?title=PySide)
next: Embedding FreeCAD > (/wiki
/index.php?title=Embedding_FreeCAD)

import FreeCAD as App

import FreeCADGui

import FreeCAD

import Part

class Line:

def __init__(self, obj):

'''"App two point properties" '''

 obj.addProperty("App::PropertyVector","p1","Line","Start point")

 obj.addProperty("App::PropertyVector","p2","Line","End point").p2=FreeCAD.Vector

 obj.Proxy = self

def execute(self, fp):

'''"Print a short message when doing a recomputation, this method is mandatory" '''

 fp.Shape = Part.makeLine(fp.p1,fp.p2)

class ViewProviderLine:

def __init__(self, obj):

''' Set this object to the proxy object of the actual view provider '''

 obj.Proxy = self

def getDefaultDisplayMode(self):

''' Return the name of the default display mode. It must be defined in getDisplayModes. '''

return "Flat Lines"

a=FreeCAD.ActiveDocument.addObject("Part::FeaturePython","Line")

Line(a)

ViewProviderLine(a.ViewObject)

App.ActiveDocument.recompute()

Further informations
There are a few very interesting forum threads about scripted objects:

- http://forum.freecadweb.org/viewtopic.php?f=22&t=13740
(http://forum.freecadweb.org/viewtopic.php?f=22&t=13740)

- http://forum.freecadweb.org/viewtopic.php?t=12139
(http://forum.freecadweb.org/viewtopic.php?t=12139)

In addition to the examples presented here have a look at FreeCAD source
code src/Mod/TemplatePyMod/FeaturePython.py (https://github.com/FreeCAD
/FreeCAD/blob/master/src/Mod/TemplatePyMod/FeaturePython.py) for more
examples.

Index (/wiki

/index.php?title=Online_Help_Toc)

<translate> FreeCAD has the amazing ability to be importable as a python
module in other programs or in a standalone python console, together with all
its modules and components. It's even possible to import the FreeCAD GUI as
python module -- with some restrictions, however.

Using FreeCAD without GUI

One first, direct, easy and useful application you can make of this is to import
FreeCAD documents into your program. In the following example, we'll import
the Part geometry of a FreeCAD document into blender
(http://www.blender.org). Here is the complete script. I hope you'll be
impressed by its simplicity:

Manual - FreeCAD Documentation

139 von 244

</translate>
FREECADPATH = '/opt/FreeCAD/lib' # path to your FreeCAD.so or FreeCAD.dll file

import Blender, sys

sys.path.append(FREECADPATH)

def import_fcstd(filename):

try:

import FreeCAD

except ValueError:

Blender.Draw.PupMenu('Error%t|FreeCAD library not found. Please check the FREECADPATH variable in

else:

 scene = Blender.Scene.GetCurrent()

import Part

 doc = FreeCAD.open(filename)

 objects = doc.Objects

for ob in objects:

if ob.Type[:4] == 'Part':

 shape = ob.Shape

if shape.Faces:

 mesh = Blender.Mesh.New()

 rawdata = shape.tessellate(1)

for v in rawdata[0]:

 mesh.verts.append((v.x,v.y,v.z))

for f in rawdata[1]:

 mesh.faces.append.append(f)

 scene.objects.new(mesh,ob.Name)

Blender.Redraw()

def main():

Blender.Window.FileSelector(import_fcstd, 'IMPORT FCSTD',

Blender.sys.makename(ext='.fcstd'))

This lets you import the script without running it

if __name__=='__main__':

 main()

<translate>
The first, important part is to make sure python will find our FreeCAD library.
Once it finds it, all FreeCAD modules such as Part, that we'll use too, will be
available automatically. So we simply take the sys.path variable, which is
where python searches for modules, and we append the FreeCAD lib path. This
modification is only temporary, and will be lost when we'll close our python
interpreter. Another way could be making a link to your FreeCAD library in one
of the python search paths. I kept the path in a constant (FREECADPATH) so it'll
be easier for another user of the script to configure it to his own system.

Once we are sure the library is loaded (the try/except sequence), we can now
work with FreeCAD, the same way as we would inside FreeCAD's own python
interpreter. We open the FreeCAD document that is passed to us by the main()
function, and we make a list of its objects. Then, as we choosed only to care
about Part geometry, we check if the Type property of each object contains
"Part", then we tesselate it.

The tesselation produce a list of vertices and a list of faces defined by vertices
indexes. This is perfect, since it is exactly the same way as blender defines
meshes. So, our task is ridiculously simple, we just add both lists contents to
the verts and faces of a blender mesh. When everything is done, we just redraw
the screen, and that's it!

Of course this script is very simple (in fact I made a more advanced here
(http://yorik.orgfree.com/scripts/import_freecad.py)), you might want to
extend it, for example importing mesh objects too, or importing Part geometry
that has no faces, or import other file formats that FreeCAD can read. You
might also want to export geometry to a FreeCAD document, which can be
done the same way. You might also want to build a dialog, so the user can
choose what to import, etc... The beauty of all this actually lies in the fact that

Manual - FreeCAD Documentation

140 von 244

< previous: Scripted objects (/wiki/index.php?title=Scripted_objects)
next: Code snippets > (/wiki/index.php?title=Code_snippets)

you let FreeCAD do the ground work while presenting its results in the program
of your choice.

Using FreeCAD with GUI

From version 4.2 on Qt has the intriguing ability to embed Qt-GUI-dependent
plugins into non-Qt host applications and share the host's event loop.

Especially, for FreeCAD this means that it can be imported from within another
application with its whole user interface where the host application has full
control over FreeCAD, then.

The whole python code to achieve that has only two lines

</translate>

import FreeCADGui

FreeCADGui.showMainWindow()

<translate>
If the host application is based on Qt then this solution should work on all
platforms which Qt supports. However, the host should link the same Qt
version as FreeCAD because otherwise you could run into unexpected runtime
errors.

For non-Qt applications, however, there are a few limitations you must be
aware of. This solution probably doesn't work together with all other toolkits.
For Windows it works as long as the host application is directly based on Win32
or any other toolkit that internally uses the Win32 API such as wxWidgets, MFC
or WinForms. In order to get it working under X11 the host application must link
the "glib" library.

Note, for any console application this solution of course doesn't work because
there is no event loop running.

Index
(/wiki/index.php?title=Online_Help_Toc)

</translate>

This page contains examples, pieces, chunks of FreeCAD python code collected
from users experiences and discussions on the forums. Read and use it as a
start for your own scripts...

A typical InitGui.py file

Every module must contain, besides your main module file, an InitGui.py file,
responsible for inserting the module in the main Gui. This is an example of a
simple one.

Manual - FreeCAD Documentation

141 von 244

 (/wiki/index.php?title=File:Base_ExampleCommandModel.png) Tutorial

Topic
Python
Level
Beginner
Time to complete

Author

FreeCAD version

Example File(s)

class

 list

Gui

A typical module file

This is an example of a main module file, containing everything your module
does. It is the Scripts.py file invoked by the previous example. You can have all
your custom commands here.

import FreeCAD, FreeCADGui

class ScriptCmd:

def Activated(self):

Here your write what your ScriptCmd does...

FreeCAD.Console.PrintMessage('Hello, World!')

def GetResources(self):

return {'Pixmap' : 'path_to_an_icon/myicon.png', 'MenuText': 'Short text', 'ToolTip'

FreeCADGui.addCommand('Script_Cmd', ScriptCmd())

Import a new filetype

Making an importer for a new filetype in FreeCAD is easy. FreeCAD doesn't
consider that you import data in an opened document, but rather that you
simply can directly open the new filetype. So what you need to do is to add the
new file extension to FreeCAD's list of known extensions, and write the code
that will read the file and create the FreeCAD objects you want:

This line must be added to the InitGui.py file to add the new file extension to
the list:

Assumes Import_Ext.py is the file that has the code for opening and reading .ext files

FreeCAD.addImportType("Your new File Type (*.ext)","Import_Ext")

Then in the Import_Ext.py file:

def open(filename):

 doc=App.newDocument()

here you do all what is needed with filename, read, classify data, create corresponding FreeCAD obje

 doc.recompute()

To export your document to some new filetype works the same way, except
that you use:

Manual - FreeCAD Documentation

142 von 244

FreeCAD.addExportType("Your new File Type (*.ext)","Export_Ext")

Adding a line

A line simply has 2 points.

import Part,PartGui

doc=App.activeDocument()

add a line element to the document and set its points

l=Part.Line()

l.StartPoint=(0.0,0.0,0.0)

l.EndPoint=(1.0,1.0,1.0)

doc.addObject("Part::Feature","Line").Shape=l.toShape()

doc.recompute()

Adding a polygon

A polygon is simply a set of connected line segments (a polyline in AutoCAD). It
doesn't need to be closed.

import Part,PartGui

doc=App.activeDocument()

n=list()

create a 3D vector, set its coordinates and add it to the list

v=App.Vector(0,0,0)

n.append(v)

v=App.Vector(10,0,0)

n.append(v)

#... repeat for all nodes

Create a polygon object and set its nodes

p=doc.addObject("Part::Polygon","Polygon")

p.Nodes=n

doc.recompute()

Adding and removing an object to a group

doc=App.activeDocument()

grp=doc.addObject("App::DocumentObjectGroup", "Group")

lin=doc.addObject("Part::Feature", "Line")

grp.addObject(lin) # adds the lin object to the group grp

grp.removeObject(lin) # removes the lin object from the group grp

Note: You can even add other groups to a group...

Adding a Mesh

import Mesh

doc=App.activeDocument()

create a new empty mesh

m = Mesh.Mesh()

build up box out of 12 facets

m.addFacet(0.0,0.0,0.0, 0.0,0.0,1.0, 0.0,1.0,1.0)

m.addFacet(0.0,0.0,0.0, 0.0,1.0,1.0, 0.0,1.0,0.0)

m.addFacet(0.0,0.0,0.0, 1.0,0.0,0.0, 1.0,0.0,1.0)

m.addFacet(0.0,0.0,0.0, 1.0,0.0,1.0, 0.0,0.0,1.0)

m.addFacet(0.0,0.0,0.0, 0.0,1.0,0.0, 1.0,1.0,0.0)

m.addFacet(0.0,0.0,0.0, 1.0,1.0,0.0, 1.0,0.0,0.0)

m.addFacet(0.0,1.0,0.0, 0.0,1.0,1.0, 1.0,1.0,1.0)

m.addFacet(0.0,1.0,0.0, 1.0,1.0,1.0, 1.0,1.0,0.0)

m.addFacet(0.0,1.0,1.0, 0.0,0.0,1.0, 1.0,0.0,1.0)

m.addFacet(0.0,1.0,1.0, 1.0,0.0,1.0, 1.0,1.0,1.0)

m.addFacet(1.0,1.0,0.0, 1.0,1.0,1.0, 1.0,0.0,1.0)

m.addFacet(1.0,1.0,0.0, 1.0,0.0,1.0, 1.0,0.0,0.0)

scale to a edge langth of 100

m.scale(100.0)

add the mesh to the active document

me=doc.addObject("Mesh::Feature","Cube")

me.Mesh=m

Manual - FreeCAD Documentation

143 von 244

Adding an arc or a circle

import Part

doc = App.activeDocument()

c = Part.Circle()

c.Radius=10.0

f = doc.addObject("Part::Feature", "Circle") # create a document with a circle feature

f.Shape = c.toShape() # Assign the circle shape to the shape property

doc.recompute()

Accessing and changing representation of an object

Each object in a FreeCAD document has an associated view representation
object that stores all the parameters that define how the object appear, like
color, linewidth, etc...

gad=Gui.activeDocument() # access the active document containing all

view representations of the features in the

corresponding App document

v=gad.getObject("Cube") # access the view representation to the Mesh feature 'Cube'

v.ShapeColor # prints the color to the console

v.ShapeColor=(1.0,1.0,1.0) # sets the shape color to white

Observing mouse events in the 3D viewer via Python

The Inventor framework allows to add one or more callback nodes to the
scenegraph of the viewer. By default in FreeCAD one callback node is installed
per viewer which allows to add global or static C++ functions. In the
appropriate Python binding some methods are provided to make use of this
technique from within Python code.

App.newDocument()

v=Gui.activeDocument().activeView()

#This class logs any mouse button events. As the registered callback function fires twice for 'down' and

#'up' events we need a boolean flag to handle this.

class ViewObserver:

def logPosition(self, info):

 down = (info["State"] == "DOWN")

 pos = info["Position"]

if (down):

FreeCAD.Console.PrintMessage("Clicked on position: ("+str(pos[0])+", "+str(pos

o = ViewObserver()

c = v.addEventCallback("SoMouseButtonEvent",o.logPosition)

Now, pick somewhere on the area in the 3D viewer and observe the messages
in the output window. To finish the observation just call

v.removeEventCallback("SoMouseButtonEvent",c)

The following event types are supported

SoEvent -- all kind of events
SoButtonEvent -- all mouse button and key events
SoLocation2Event -- 2D movement events (normally mouse movements)
SoMotion3Event -- 3D movement events (normally spaceball)
SoKeyboardEvent -- key down and up events
SoMouseButtonEvent -- mouse button down and up events
SoSpaceballButtonEvent -- spaceball button down and up events

The Python function that can be registered with addEventCallback() expects a
dictionary. Depending on the watched event the dictionary can contain

Manual - FreeCAD Documentation

144 von 244

different keys.

For all events it has the keys:

Type -- the name of the event type i.e. SoMouseEvent, SoLocation2Event, ...
Time -- the current time as string
Position -- a tuple of two integers, mouse position
ShiftDown -- a boolean, true if Shift was pressed otherwise false
CtrlDown -- a boolean, true if Ctrl was pressed otherwise false
AltDown -- a boolean, true if Alt was pressed otherwise false

For all button events, i.e. keyboard, mouse or spaceball events

State -- A string 'UP' if the button was up, 'DOWN' if it was down or
'UNKNOWN' for all other cases

For keyboard events:

Key -- a character of the pressed key
For mouse button event

Button -- The pressed button, could be BUTTON1, ..., BUTTON5 or ANY
For spaceball events:

Button -- The pressed button, could be BUTTON1, ..., BUTTON7 or ANY
And finally motion events:

Translation -- a tuple of three floats
Rotation -- a quaternion for the rotation, i.e. a tuple of four floats

Display keys pressed and Events command

This macro displays in the report view the keys pressed and all events
command

App.newDocument()

v=Gui.activeDocument().activeView()

class ViewObserver:

def logPosition(self, info):

try:

 down = (info["Key"])

FreeCAD.Console.PrintMessage(str(down)+"\n") # here the character pressed

FreeCAD.Console.PrintMessage(str(info)+"\n") # list all events command

FreeCAD.Console.PrintMessage("_______________________________________"+"\n")

except Exception:

None

o = ViewObserver()

c = v.addEventCallback("SoEvent",o.logPosition)

#v.removeEventCallback("SoEvent",c) # remove ViewObserver

Manipulate the scenegraph in Python

It is also possible to get and change the scenegraph in Python, with the 'pivy'
module -- a Python binding for Coin.

from pivy.coin import * # load the pivy module

view = Gui.ActiveDocument.ActiveView # get the active viewer

root = view.getSceneGraph() # the root is an SoSeparator node

root.addChild(SoCube())

view.fitAll()

Manual - FreeCAD Documentation

145 von 244

The Python API of pivy is created by using the tool SWIG. As we use in FreeCAD
some self-written nodes you cannot create them directly in Python. However, it
is possible to create a node by its internal name. An instance of the type
'SoFCSelection' can be created with

type = SoType.fromName("SoFCSelection")

node = type.createInstance()

Adding and removing objects to/from the scenegraph

Adding new nodes to the scenegraph can be done this way. Take care of always
adding a SoSeparator to contain the geometry, coordinates and material info
of a same object. The following example adds a red line from (0,0,0) to (10,0,0):

from pivy import coin

sg = Gui.ActiveDocument.ActiveView.getSceneGraph()

co = coin.SoCoordinate3()

pts = [[0,0,0],[10,0,0]]

co.point.setValues(0,len(pts),pts)

ma = coin.SoBaseColor()

ma.rgb = (1,0,0)

li = coin.SoLineSet()

li.numVertices.setValue(2)

no = coin.SoSeparator()

no.addChild(co)

no.addChild(ma)

no.addChild(li)

sg.addChild(no)

To remove it, simply issue:

sg.removeChild(no)

Adding custom widgets to the interface

You can create custom widgets with Qt designer, transform them into a python
script, and then load them into the FreeCAD interface with PyQt4.

The python code produced by the Ui python compiler (the tool that converts
qt-designer .ui files into python code) generally looks like this (it is simple, you
can also code it directly in python):

class myWidget_Ui(object):

def setupUi(self, myWidget):

 myWidget.setObjectName("my Nice New Widget")

 myWidget.resize(QtCore.QSize(QtCore.QRect(0,0,300,100).size()).expandedTo(myWidget.minimumSizeHint

self.label = QtGui.QLabel(myWidget) # creates a label

self.label.setGeometry(QtCore.QRect(50,50,200,24)) # sets its size

self.label.setObjectName("label") # sets its name, so it can be found by name

def retranslateUi(self, draftToolbar): # built-in QT function that manages translations of widgets

 myWidget.setWindowTitle(QtGui.QApplication.translate("myWidget", "My Widget", None, QtGui

self.label.setText(QtGui.QApplication.translate("myWidget", "Welcome to my new widget!"

Then, all you need to do is to create a reference to the FreeCAD Qt window,
insert a custom widget into it, and "transform" this widget into yours with the
Ui code we just made:

app = QtGui.qApp

FCmw = app.activeWindow() # the active qt window, = the freecad window since we are inside it

myNewFreeCADWidget = QtGui.QDockWidget() # create a new dckwidget

myNewFreeCADWidget.ui = myWidget_Ui() # load the Ui script

myNewFreeCADWidget.ui.setupUi(myNewFreeCADWidget) # setup the ui

FCmw.addDockWidget(QtCore.Qt.RightDockWidgetArea,myNewFreeCADWidget) # add the widget to the main window

Adding a Tab to the Combo View

Manual - FreeCAD Documentation

146 von 244

The following code allows you to add a tab to the FreeCAD ComboView, besides
the "Project" and "Tasks" tabs. It also uses the uic module to load an ui file
directly in that tab.

create new Tab in ComboView

from PySide import QtGui,QtCore

#from PySide import uic

def getMainWindow():

"returns the main window"

using QtGui.qApp.activeWindow() isn't very reliable because if another

widget than the mainwindow is active (e.g. a dialog) the wrong widget is

returned

 toplevel = QtGui.qApp.topLevelWidgets()

for i in toplevel:

if i.metaObject().className() == "Gui::MainWindow":

return i

raise Exception("No main window found")

def getComboView(mw):

 dw=mw.findChildren(QtGui.QDockWidget)

for i in dw:

if str(i.objectName()) == "Combo View":

return i.findChild(QtGui.QTabWidget)

elif str(i.objectName()) == "Python Console":

return i.findChild(QtGui.QTabWidget)

raise Exception ("No tab widget found")

mw = getMainWindow()

tab = getComboView(getMainWindow())

tab2=QtGui.QDialog()

tab.addTab(tab2,"A Special Tab")

#uic.loadUi("/myTaskPanelforTabs.ui",tab2)

tab2.show()

#tab.removeTab(2)

Enable or disable a window

from PySide import QtGui

mw=FreeCADGui.getMainWindow()

dws=mw.findChildren(QtGui.QDockWidget)

objectName may be :

"Report view"

"Tree view"

"Property view"

"Selection view"

"Combo View"

"Python console"

"draftToolbar"

for i in dws:

if i.objectName() == "Report view":

 dw=i

break

va=dw.toggleViewAction()

va.setChecked(True) # True or False

dw.setVisible(True) # True or False

Opening a custom webpage

import WebGui

WebGui.openBrowser("http://www.example.com")

Getting the HTML contents of an opened webpage

Manual - FreeCAD Documentation

147 von 244

from PyQt4 import QtGui,QtWebKit

a = QtGui.qApp

mw = a.activeWindow()

v = mw.findChild(QtWebKit.QWebFrame)

html = unicode(v.toHtml())

print html

Retrieve and use the coordinates of 3 selected points or objects

-*- coding: utf-8 -*-

the line above to put the accentuated in the remarks

If this line is missing, an error will be returned

extract and use the coordinates of 3 objects selected

import Part, FreeCAD, math, PartGui, FreeCADGui

from FreeCAD import Base, Console

sel = FreeCADGui.Selection.getSelection() # " sel " contains the items selected

if len(sel)!=3 :

If there are no 3 objects selected, an error is displayed in the report view

The \r and \n at the end of line mean return and the newline CR + LF.

Console.PrintError("Select 3 points exactly\r\n")

else :

 points=[]

for obj in sel:

 points.append(obj.Shape.BoundBox.Center)

for pt in points:

display of the coordinates in the report view

Console.PrintMessage(str(pt.x)+"\r\n")

Console.PrintMessage(str(pt.y)+"\r\n")

Console.PrintMessage(str(pt.z)+"\r\n")

Console.PrintMessage(str(pt[1]) + "\r\n")

List all objects

-*- coding: utf-8 -*-

import FreeCAD,Draft

List all objects of the document

doc = FreeCAD.ActiveDocument

objs = FreeCAD.ActiveDocument.Objects

#App.Console.PrintMessage(str(objs) + "\n")

#App.Console.PrintMessage(str(len(FreeCAD.ActiveDocument.Objects)) + " Objects" + "\n")

for obj in objs:

 a = obj.Name # list the Name of the object (not modifia

 b = obj.Label # list the Label of the object (modifiable)

try:

 c = obj.LabelText # list the LabeText of the text (modifiable)

App.Console.PrintMessage(str(a) +" "+ str(b) +" "+ str(c) + "\n") # Displays the Name the Label a

except:

App.Console.PrintMessage(str(a) +" "+ str(b) + "\n") # Displays the Name and the Label of the obj

#doc.removeObject("Box") # Clears the designated object

List the dimension give the name of object

for edge in FreeCAD.ActiveDocument.MyObjectName.Shape.Edges: # replace "MyObjectName" for list

print edge.Length

Function resident with the mouse click action

Here with SelObserver on a object select

Manual - FreeCAD Documentation

148 von 244

-*- coding: utf-8 -*-

causes an action to the mouse click on an object

This function remains resident (in memory) with the function "addObserver(s)"

"removeObserver(s) # Uninstalls the resident function

class SelObserver:

def setPreselection(self,doc,obj,sub): # Preselection object

App.Console.PrintMessage(str(sub)+ "\n") # The part of the object name

def addSelection(self,doc,obj,sub,pnt): # Selection object

App.Console.PrintMessage("addSelection"+ "\n")

App.Console.PrintMessage(str(doc)+ "\n") # Name of the document

App.Console.PrintMessage(str(obj)+ "\n") # Name of the object

App.Console.PrintMessage(str(sub)+ "\n") # The part of the object name

App.Console.PrintMessage(str(pnt)+ "\n") # Coordinates of the object

App.Console.PrintMessage("______"+ "\n")

def removeSelection(self,doc,obj,sub): # Delete the selected object

App.Console.PrintMessage("removeSelection"+ "\n")

def setSelection(self,doc): # Selection in ComboView

App.Console.PrintMessage("setSelection"+ "\n")

def clearSelection(self,doc): # If click on the screen, clear the selection

App.Console.PrintMessage("clearSelection"+ "\n") # If click on another object, clear the previou

s =SelObserver()

FreeCADGui.Selection.addObserver(s) # install the function mode resident

#FreeCADGui.Selection.removeObserver(s) # Uninstall the resident function

Other example with ViewObserver on a object select or view

App.newDocument()

v=Gui.activeDocument().activeView()

#This class logs any mouse button events. As the registered callback function fires twice for 'down' and

#'up' events we need a boolean flag to handle this.

class ViewObserver:

def __init__(self, view):

self.view = view

def logPosition(self, info):

 down = (info["State"] == "DOWN")

 pos = info["Position"]

if (down):

FreeCAD.Console.PrintMessage("Clicked on position: ("+str(pos[0])+", "+str(pos

 pnt = self.view.getPoint(pos)

FreeCAD.Console.PrintMessage("World coordinates: " + str(pnt) + "\n")

 info = self.view.getObjectInfo(pos)

FreeCAD.Console.PrintMessage("Object info: " + str(info) + "\n")

o = ViewObserver(v)

c = v.addEventCallback("SoMouseButtonEvent",o.logPosition)

Finding-selecting all elements below cursor

Manual - FreeCAD Documentation

149 von 244

from pivy import coin

import FreeCADGui

def mouse_over_cb(event_callback):

event = event_callback.getEvent()

 pos = event.getPosition().getValue()

 listObjects = FreeCADGui.ActiveDocument.ActiveView.getObjectsInfo((int(pos[0]),int(pos

 obj = []

if listObjects:

FreeCAD.Console.PrintMessage("\n *** Objects under mouse pointer ***")

for o in listObjects:

 label = str(o["Object"])

if not label in obj:

 obj.append(label)

FreeCAD.Console.PrintMessage("\n"+str(obj))

view = FreeCADGui.ActiveDocument.ActiveView

mouse_over = view.addEventCallbackPivy(coin.SoLocation2Event.getClassTypeId(), mouse_over_cb

to remove Callback :

#view.removeEventCallbackPivy(coin.SoLocation2Event.getClassTypeId(), mouse_over)

####

#The easy way is probably to use FreeCAD's selection.

#FreeCADGui.ActiveDocument.ActiveView.getObjectsInfo(mouse_coords)

####

#you get that kind of result :

#'Document': 'Unnamed', 'Object': 'Box', 'Component': 'Face2', 'y': 8.604081153869629, 'x': 21.0, 'z': 8.

####

#You can use this data to add your element to FreeCAD's selection :

#FreeCADGui.Selection.addSelection(FreeCAD.ActiveDocument.Box,'Face2',21.0,8.604081153869629,8.5530471801

List the components of an object

Manual - FreeCAD Documentation

150 von 244

-*- coding: utf-8 -*-

This function list the components of an object

and extract this object its XYZ coordinates,

its edges and their lengths center of mass and coordinates

its faces and their center of mass

its faces and their surfaces and coordinates

8/05/2014

import Draft,Part

def detail():

 sel = FreeCADGui.Selection.getSelection() # Select an object

if len(sel) != 0: # If there is a selection then

Vertx=[]

Edges=[]

Faces=[]

 compt_V=0

 compt_E=0

 compt_F=0

 pas =0

 perimetre = 0.0

EdgesLong = []

Displays the "Name" and the "Label" of the selection

App.Console.PrintMessage("Selection > " + str(sel[0].Name) + " " + str(sel[0].Label

for j in enumerate(sel[0].Shape.Edges): # Search the "Edges"

 compt_E+=1

Edges.append("Edge%d" % (j[0]+1))

EdgesLong.append(str(sel[0].Shape.Edges[compt_E-1].Length))

 perimetre += (sel[0].Shape.Edges[compt_E-1].Length) # calculates the peri

Displays the "Edge" and its length

App.Console.PrintMessage("Edge"+str(compt_E)+" Length > "+str(sel[0].Shape.Edges

Displays the "Edge" and its center mass

App.Console.PrintMessage("Edge"+str(compt_E)+" Center > "+str(sel[0].Shape.Edges

 num = sel[0].Shape.Edges[compt_E-1].Vertexes[0]

Vertx.append("X1: "+str(num.Point.x))

Vertx.append("Y1: "+str(num.Point.y))

Vertx.append("Z1: "+str(num.Point.z))

Displays the coordinates 1

App.Console.PrintMessage("X1: "+str(num.Point[0])+" Y1: "+str(num.Point[1])+" Z1: "

try:

 num = sel[0].Shape.Edges[compt_E-1].Vertexes[1]

Vertx.append("X2: "+str(num.Point.x))

Vertx.append("Y2: "+str(num.Point.y))

Vertx.append("Z2: "+str(num.Point.z))

except:

Vertx.append("-")

Vertx.append("-")

Vertx.append("-")

Displays the coordinates 2

App.Console.PrintMessage("X2: "+str(num.Point[0])+" Y2: "+str(num.Point[1])+" Z2: "

App.Console.PrintMessage("\n")

App.Console.PrintMessage("Perimeter of the form : "+str(perimetre)+"\n")

App.Console.PrintMessage("\n")

FacesSurf = []

for j in enumerate(sel[0].Shape.Faces): # Search the "Faces"

 compt_F+=1

Faces.append("Face%d" % (j[0]+1))

FacesSurf.append(str(sel[0].Shape.Faces[compt_F-1].Area))

Displays 'Face' and its surface

App.Console.PrintMessage("Face"+str(compt_F)+" > Surface "+str(sel[0].Shape.

Displays 'Face' and its CenterOfMass

App.Console.PrintMessage("Face"+str(compt_F)+" > Center "+str(sel[0].Shape.

Displays 'Face' and its Coordinates

FacesCoor = []

 fco = 0

Manual - FreeCAD Documentation

151 von 244

for f0 in sel[0].Shape.Faces[compt_F-1].Vertexes: # Search the Vertexe

 fco += 1

FacesCoor.append("X"+str(fco)+": "+str(f0.Point.x))

FacesCoor.append("Y"+str(fco)+": "+str(f0.Point.y))

FacesCoor.append("Z"+str(fco)+": "+str(f0.Point.z))

Displays 'Face' and its Coordinates

App.Console.PrintMessage("Face"+str(compt_F)+" > Coordinate"+str(FacesCoor)+

Displays 'Face' and its Volume

App.Console.PrintMessage("Face"+str(compt_F)+" > Volume "+str(sel[0].Shape.

App.Console.PrintMessage("\n")

Displays the total surface of the form

App.Console.PrintMessage("Surface of the form : "+str(sel[0].Shape.Area)+"\n")

Displays the total Volume of the form

App.Console.PrintMessage("Volume of the form : "+str(sel[0].Shape.Volume)+"\n"

detail()

List the PropertiesList

import FreeCADGui

from FreeCAD import Console

o = App.ActiveDocument.ActiveObject

op = o.PropertiesList

for p in op:

Console.PrintMessage("Property: "+ str(p)+ " Value: " + str(o.getPropertyByName(p))+"\r\n"

Adding one Property "Comment"

import Draft

obj = FreeCADGui.Selection.getSelection()[0]

obj.addProperty("App::PropertyString","GComment","Draft","Font name").GComment = "Comment here"

App.activeDocument().recompute()

Search and data extraction

Examples of research and decoding information on an object.

Each section is independently and is separated by "############" can be
copied directly into the Python console, or in a macro or use this macro. The
description of the macro in the commentary.

Displaying it in the "View Report" window (View > Views > View report)

Manual - FreeCAD Documentation

152 von 244

-*- coding: utf-8 -*-

from __future__ import unicode_literals

Exemples de recherche et de decodage d'informations sur un objet

Chaque section peut etre copiee directement dans la console Python ou dans une macro ou utilisez la mac

Certaines commandes se repetent seul l'approche est differente

L'affichage se fait dans la Vue rapport : Menu Affichage > Vues > Vue rapport

#

Examples of research and decoding information on an object

Each section can be copied directly into the Python console, or in a macro or uses this macro

Certain commands as repeat alone approach is different

Displayed on Report view : Menu View > Views > report view

#

rev:30/08/2014:29/09/2014:17/09/2015

from FreeCAD import Base

import DraftVecUtils, Draft, Part

mydoc = FreeCAD.activeDocument().Name # Name of active Document

App.Console.PrintMessage("Active docu : "+(mydoc)+"\n")

##

sel = FreeCADGui.Selection.getSelection() # select object with getSelecti

object_Label = sel[0].Label # Label of the object (modifiab

App.Console.PrintMessage("object_Label : "+(object_Label)+"\n")

##

sel = FreeCADGui.Selection.getSelection() # select object with getSelecti

App.Console.PrintMessage("sel : "+str(sel[0])+"\n\n") # sel[0] first object selected

##

sel = FreeCADGui.Selection.getSelection() # select object with getSelecti

object_Name = sel[0].Name # Name of the object (not modif

App.Console.PrintMessage("object_Name : "+str(object_Name)+"\n\n")

##

try:

SubElement = FreeCADGui.Selection.getSelectionEx() # sub element name with getSele

 element_ = SubElement[0].SubElementNames[0] # name of 1 element selected

App.Console.PrintMessage("elementSelec : "+str(element_)+"\n\n")

except:

App.Console.PrintMessage("Oups"+"\n\n")

##

sel = FreeCADGui.Selection.getSelection() # select object with getSelecti

App.Console.PrintMessage("sel : "+str(sel[0])+"\n\n") # sel[0] first object selected

##

SubElement = FreeCADGui.Selection.getSelectionEx() # sub element name with getSele

App.Console.PrintMessage("SubElement : "+str(SubElement[0])+"\n\n") # name of sub element

##

sel = FreeCADGui.Selection.getSelection() # select object with getSelecti

i = 0

for j in enumerate(sel[0].Shape.Edges): # list all Edges

 i += 1

App.Console.PrintMessage("Edges n : "+str(i)+"\n")

 a = sel[0].Shape.Edges[j[0]].Vertexes[0]

App.Console.PrintMessage("X1 : "+str(a.Point.x)+"\n") # coordinate XYZ first point

App.Console.PrintMessage("Y1 : "+str(a.Point.y)+"\n")

App.Console.PrintMessage("Z1 : "+str(a.Point.z)+"\n")

try:

 a = sel[0].Shape.Edges[j[0]].Vertexes[1]

App.Console.PrintMessage("X2 : "+str(a.Point.x)+"\n") # coordinate XYZ second point

App.Console.PrintMessage("Y2 : "+str(a.Point.y)+"\n")

App.Console.PrintMessage("Z2 : "+str(a.Point.z)+"\n")

except:

App.Console.PrintMessage("Oups"+"\n")

App.Console.PrintMessage("\n")

##

try:

SubElement = FreeCADGui.Selection.getSelectionEx()

 subElementName = Gui.Selection.getSelectionEx()[0].SubElementNames[0]

App.Console.PrintMessage("subElementName : "+str(subElementName)+"\n")

Manual - FreeCAD Documentation

153 von 244

 subObjectLength = Gui.Selection.getSelectionEx()[0].SubObjects[0].Length

App.Console.PrintMessage("subObjectLength: "+str(subObjectLength)+"\n\n")

 subObjectX1 = Gui.Selection.getSelectionEx()[0].SubObjects[0].Vertexes[0].Point.x

App.Console.PrintMessage("subObject_X1 : "+str(subObjectX1)+"\n")

 subObjectY1 = Gui.Selection.getSelectionEx()[0].SubObjects[0].Vertexes[0].Point.y

App.Console.PrintMessage("subObject_Y1 : "+str(subObjectY1)+"\n")

 subObjectZ1 = Gui.Selection.getSelectionEx()[0].SubObjects[0].Vertexes[0].Point.z

App.Console.PrintMessage("subObject_Z1 : "+str(subObjectZ1)+"\n\n")

 subObjectX2 = Gui.Selection.getSelectionEx()[0].SubObjects[0].Vertexes[1].Point.x

App.Console.PrintMessage("subObject_X2 : "+str(subObjectX2)+"\n")

 subObjectY2 = Gui.Selection.getSelectionEx()[0].SubObjects[0].Vertexes[1].Point.y

App.Console.PrintMessage("subObject_Y2 : "+str(subObjectY2)+"\n")

 subObjectZ2 = Gui.Selection.getSelectionEx()[0].SubObjects[0].Vertexes[1].Point.z

App.Console.PrintMessage("subObject_Z2 : "+str(subObjectZ2)+"\n\n")

 subObjectBoundBox = Gui.Selection.getSelectionEx()[0].SubObjects[0].BoundBox

App.Console.PrintMessage("subObjectBBox : "+str(subObjectBoundBox)+"\n")

 subObjectBoundBoxCenter = Gui.Selection.getSelectionEx()[0].SubObjects[0].BoundBox.Center

App.Console.PrintMessage("subObjectBBoxCe: "+str(subObjectBoundBoxCenter)+"\n")

 surfaceFace = Gui.Selection.getSelectionEx()[0].SubObjects[0].Area

App.Console.PrintMessage("surfaceFace : "+str(surfaceFace)+"\n\n")

except:

App.Console.PrintMessage("Oups"+"\n\n")

##

sel = FreeCADGui.Selection.getSelection() # select object with getSelecti

surface = sel[0].Shape.Area # Area object complete

App.Console.PrintMessage("surfaceObjet : "+str(surface)+"\n\n")

##

sel = FreeCADGui.Selection.getSelection() # select object with getSelecti

CenterOfMass = sel[0].Shape.CenterOfMass # Center of Mass of the object

App.Console.PrintMessage("CenterOfMass : "+str(CenterOfMass)+"\n")

App.Console.PrintMessage("CenterOfMassX : "+str(CenterOfMass[0])+"\n") # coordinates [0]=X [1]=Y [2]=Z

App.Console.PrintMessage("CenterOfMassY : "+str(CenterOfMass[1])+"\n")

App.Console.PrintMessage("CenterOfMassZ : "+str(CenterOfMass[2])+"\n\n")

##

sel = FreeCADGui.Selection.getSelection() # select object with getSelecti

for j in enumerate(sel[0].Shape.Faces): # List alles faces of the objec

App.Console.PrintMessage("Face : "+str("Face%d" % (j[0]+1))+"\n")

App.Console.PrintMessage("\n\n")

##

sel = FreeCADGui.Selection.getSelection() # select object with getSelecti

volume_ = sel[0].Shape.Volume # Volume of the object

App.Console.PrintMessage("volume_ : "+str(volume_)+"\n\n")

##

sel = FreeCADGui.Selection.getSelection() # select object with getSelecti

boundBox_= sel[0].Shape.BoundBox # BoundBox of the object

App.Console.PrintMessage("boundBox_ : "+str(boundBox_)+"\n")

boundBoxLX = boundBox_.XLength # Length x boundBox rectangle

boundBoxLY = boundBox_.YLength # Length y boundBox rectangle

boundBoxLZ = boundBox_.ZLength # Length z boundBox rectangle

boundBoxDiag= boundBox_.DiagonalLength # Diagonal Length boundBox rect

App.Console.PrintMessage("boundBoxLX : "+str(boundBoxLX)+"\n")

App.Console.PrintMessage("boundBoxLY : "+str(boundBoxLY)+"\n")

App.Console.PrintMessage("boundBoxLZ : "+str(boundBoxLZ)+"\n")

App.Console.PrintMessage("boundBoxDiag : "+str(boundBoxDiag)+"\n\n")

##

sel = FreeCADGui.Selection.getSelection() # select object with getSelecti

pl = sel[0].Shape.Placement # Placement Vector XYZ and Yaw-

App.Console.PrintMessage("Placement : "+str(pl)+"\n")

##

sel = FreeCADGui.Selection.getSelection() # select object with getSelecti

Manual - FreeCAD Documentation

154 von 244

pl = sel[0].Shape.Placement.Base # Placement Vector XYZ

App.Console.PrintMessage("PlacementBase : "+str(pl)+"\n\n")

##

sel = FreeCADGui.Selection.getSelection() # select object with getSelecti

Yaw = sel[0].Shape.Placement.Rotation.toEuler()[0] # decode angle Euler Yaw

App.Console.PrintMessage("Yaw : "+str(Yaw)+"\n")

Pitch = sel[0].Shape.Placement.Rotation.toEuler()[1] # decode angle Euler Pitch

App.Console.PrintMessage("Pitch : "+str(Pitch)+"\n")

Roll = sel[0].Shape.Placement.Rotation.toEuler()[2] # decode angle Euler Yaw

App.Console.PrintMessage("Roll : "+str(Roll)+"\n\n")

##

sel = FreeCADGui.Selection.getSelection() # select object with getSelecti

oripl_X = sel[0].Placement.Base[0] # decode Placement X

oripl_Y = sel[0].Placement.Base[1] # decode Placement Y

oripl_Z = sel[0].Placement.Base[2] # decode Placement Z

App.Console.PrintMessage("oripl_X : "+str(oripl_X)+"\n")

App.Console.PrintMessage("oripl_Y : "+str(oripl_Y)+"\n")

App.Console.PrintMessage("oripl_Z : "+str(oripl_Z)+"\n\n")

##

sel = FreeCADGui.Selection.getSelection() # select object with getSelecti

rotation = sel[0].Placement.Rotation # decode Placement Rotation

App.Console.PrintMessage("rotation : "+str(rotation)+"\n\n")

##

sel = FreeCADGui.Selection.getSelection() # select object with getSelecti

pl = sel[0].Shape.Placement.Rotation # decode Placement Rotation oth

App.Console.PrintMessage("Placement Rot : "+str(pl)+"\n\n")

##

sel = FreeCADGui.Selection.getSelection() # select object with getSelecti

pl = sel[0].Shape.Placement.Rotation.Angle # decode Placement Rotation Ang

App.Console.PrintMessage("Placement Rot Angle : "+str(pl)+"\n\n")

##

sel = FreeCADGui.Selection.getSelection() # select object with getSelecti

Rot_0 = sel[0].Placement.Rotation.Q[0] # decode Placement Rotation 0

App.Console.PrintMessage("Rot_0 : "+str(Rot_0)+ " rad , "+str(180 * Rot_0 / 3.1416

Rot_1 = sel[0].Placement.Rotation.Q[1] # decode Placement Rotation 1

App.Console.PrintMessage("Rot_1 : "+str(Rot_1)+ " rad , "+str(180 * Rot_1 / 3.1416

Rot_2 = sel[0].Placement.Rotation.Q[2] # decode Placement Rotation 2

App.Console.PrintMessage("Rot_2 : "+str(Rot_2)+ " rad , "+str(180 * Rot_2 / 3.1416

Rot_3 = sel[0].Placement.Rotation.Q[3] # decode Placement Rotation 3

App.Console.PrintMessage("Rot_3 : "+str(Rot_3)+"\n\n")

Manual search of an element with label

Extract the coordinate X,Y,Z and Angle giving the label

App.Console.PrintMessage("Base.x : "+str(FreeCAD.ActiveDocument.getObjectsByLabel("Cylindre"

App.Console.PrintMessage("Base.y : "+str(FreeCAD.ActiveDocument.getObjectsByLabel("Cylindre"

App.Console.PrintMessage("Base.z : "+str(FreeCAD.ActiveDocument.getObjectsByLabel("Cylindre"

App.Console.PrintMessage("Base.Angle : "+str(FreeCAD.ActiveDocument.getObjectsByLabel("Cylindre"

PS: Usually the angles are given in Radian to convert :

angle in Degrees to Radians :
Angle in radian = pi * (angle in degree) / 180
Angle in radian = math.radians(angle in degree)

�.

angle in Radians to Degrees :
Angle in degree = 180 * (angle in radian) / pi
Angle in degree = math.degrees(angle in radian)

�.

Manual - FreeCAD Documentation

155 von 244

Cartesian coordinates

This code displays the Cartesian coordinates of the selected item.

Change the value of "numberOfPoints" if you want a different number of points
(precision)

numberOfPoints = 100 # Decomposition number (or p

selectedEdge = FreeCADGui.Selection.getSelectionEx()[0].SubObjects[0].copy() # select one element

points = selectedEdge.discretize(numberOfPoints) # discretize the element

i=0

for p in points: # list and display the coord

 i+=1

print i, " X", p.x, " Y", p.y, " Z", p.z

Other method display on "Int" and "Float"

import Part

from FreeCAD import Base

c=Part.makeCylinder(2,10) # create the circle

Part.show(c) # display the shape

slice accepts two arguments:

#+ the normal of the cross section plane

#+ the distance from the origin to the cross section plane. Here you have to find a value so that the pla

s=c.slice(Base.Vector(0,1,0),0) #

here the result is a single wire

depending on the source object this can be several wires

s=s[0]

if you only need the vertexes of the shape you can use

v=[]

for i in s.Vertexes:

 v.append(i.Point)

but you can also sub-sample the section to have a certain number of points (int) ...

p1=s.discretize(20)

ii=0

for i in p1:

 ii+=1

print i # Vector()

print ii, ": X:", i.x, " Y:", i.y, " Z:", i.z # Vector decode

Draft.makeWire(p1,closed=False,face=False,support=None) # to see the difference accuracy (20)

uncomment to use

#import Draft

#Draft.downgrade(App.ActiveDocument.ActiveObject,delete=True) # first transform the DWire in Wire

#Draft.downgrade(App.ActiveDocument.ActiveObject,delete=True) # second split the Wire in single objects

#

##Draft.upgrade(FreeCADGui.Selection.getSelection(),delete=True) # to attach lines contiguous SELECTED us

... or define a sampling distance (float)

p2=s.discretize(0.5)

ii=0

for i in p2:

 ii+=1

print i # Vector()

print ii, ": X:", i.x, " Y:", i.y, " Z:", i.z # Vector decode

Draft.makeWire(p2,closed=False,face=False,support=None) # to see the difference accuracy (0.5)

uncomment to use

#import Draft

#Draft.downgrade(App.ActiveDocument.ActiveObject,delete=True) # first transform the DWire in Wire

#Draft.downgrade(App.ActiveDocument.ActiveObject,delete=True) # second split the Wire in single objects

#

##Draft.upgrade(FreeCADGui.Selection.getSelection(),delete=True) # to attach lines contiguous SELECTED us

Select all objects in the document

Manual - FreeCAD Documentation

156 von 244

import FreeCAD

for obj in FreeCAD.ActiveDocument.Objects:

print obj.Name # display the object Name

 objName = obj.Name

 obj = App.ActiveDocument.getObject(objName)

Gui.Selection.addSelection(obj) # select the object

Selecting a face of an object

select one face of the object

import FreeCAD, Draft

App=FreeCAD

nameObject = "Box" # objet

faceSelect = "Face3" # face to selection

loch=App.ActiveDocument.getObject(nameObject) # objet

Gui.Selection.clearSelection() # clear all selection

Gui.Selection.addSelection(loch,faceSelect) # select the face specified

s = Gui.Selection.getSelectionEx()

#Draft.makeFacebinder(s) #

Create one object to the position of the Camera

create one object of the position to camera with "getCameraOrientation()"

the object is still facing the screen

import Draft

plan = FreeCADGui.ActiveDocument.ActiveView.getCameraOrientation()

plan = str(plan)

extract data

a = ""

for i in plan:

if i in ("0123456789e.- "):

 a+=i

a = a.strip(" ")

a = a.split(" ")

####### extract data

#print a

#print a[0]

#print a[1]

#print a[2]

#print a[3]

xP = float(a[0])

yP = float(a[1])

zP = float(a[2])

qP = float(a[3])

pl = FreeCAD.Placement()

pl.Rotation.Q = (xP,yP,zP,qP) # rotation of object

pl.Base = FreeCAD.Vector(0.0,0.0,0.0) # here coordinates XYZ of Object

rec = Draft.makeRectangle(length=10.0,height=10.0,placement=pl,face=False,support=None) # create rectangl

#rec = Draft.makeCircle(radius=5,placement=pl,face=False,support=None) # create circle

print rec.Name

here same code simplified

import Draft

pl = FreeCAD.Placement()

pl.Rotation = FreeCADGui.ActiveDocument.ActiveView.getCameraOrientation()

pl.Base = FreeCAD.Vector(0.0,0.0,0.0)

rec = Draft.makeRectangle(length=10.0,height=10.0,placement=pl,face=False,support=None)

Find normal vector on the surface

This example show how to find normal vector on the surface by find the u,v
parameters of one point on the surface and use u,v parameters to find normal
vector

Manual - FreeCAD Documentation

157 von 244

< previous: Embedding FreeCAD (/wiki
/index.php?title=Embedding_FreeCAD)
next: Line drawing function > (/wiki
/index.php?title=Line_drawing_function)

def normal(self):

 ss=FreeCADGui.Selection.getSelectionEx()[0].SubObjects[0].copy()#SubObjects[0] is the edge list

 points = ss.discretize(3.0)#points on the surface edge,

#this example just use points on the edge for example.

#However point is not necessary on the edge, it can be anywhere on the surface.

 face=FreeCADGui.Selection.getSelectionEx()[0].SubObjects[1]

for pp in points:

 pt=FreeCAD.Base.Vector(pp.x,pp.y,pp.z)#a point on the surface edge

 uv=face.Surface.parameter(pt)# find the surface u,v parameter of a point on the surface edge

 u=uv[0]

 v=uv[1]

 normal=face.normalAt(u,v)#use u,v to find normal vector

print normal

 line=Part.makeLine((pp.x,pp.y,pp.z), (normal.x,normal.y,normal.z))

Part.show(line)

Index (/wiki/index.php?title=Online_Help_Toc)

<translate> This page shows how advanced functionality can easily be built in
Python. In this exercise, we will be building a new tool that draws a line. This
tool can then be linked to a FreeCAD command, and that command can be
called by any element of the interface, like a menu item or a toolbar button.

The main script
First we will write a script containing all our functionality. Then, we will save
this in a file, and import it in FreeCAD, so all classes and functions we write will
be availible to FreeCAD. So, launch your favorite text editor, and type the
following lines: </translate>

import FreeCADGui, Part

from pivy.coin import *

class line:

"this class will create a line after the user clicked 2 points on the screen"

def __init__(self):

self.view = FreeCADGui.ActiveDocument.ActiveView

self.stack = []

self.callback = self.view.addEventCallbackPivy(SoMouseButtonEvent.getClassTypeId(),

def getpoint(self,event_cb):

event = event_cb.getEvent()

if event.getState() == SoMouseButtonEvent.DOWN:

 pos = event.getPosition()

 point = self.view.getPoint(pos[0],pos[1])

self.stack.append(point)

if len(self.stack) == 2:

 l = Part.Line(self.stack[0],self.stack[1])

 shape = l.toShape()

Part.show(shape)

self.view.removeEventCallbackPivy(SoMouseButtonEvent.getClassTypeId(),self

<translate>

Detailed explanation
</translate>

Manual - FreeCAD Documentation

158 von 244

import Part, FreeCADGui

from pivy.coin import *

<translate> In Python, when you want to use functions from another module,
you need to import it. In our case, we will need functions from the Part Module
(/wiki/index.php?title=Part_Module), for creating the line, and from the Gui
module (FreeCADGui), for accessing the 3D view. We also need the complete
contents of the coin library, so we can use directly all coin objects like
SoMouseButtonEvent, etc... </translate>

class line:

<translate> Here we define our main class. Why do we use a class and not a
function? The reason is that we need our tool to stay "alive" while we are
waiting for the user to click on the screen. A function ends when its task has
been done, but an object (a class defines an object) stays alive until it is
destroyed. </translate>

"this class will create a line after the user clicked 2 points on the screen"

<translate> In Python, every class or function can have a description string.
This is particularly useful in FreeCAD, because when you'll call that class in the
interpreter, the description string will be displayed as a tooltip. </translate>

def __init__(self):

<translate> Python classes can always contain an __init__ function, which is
executed when the class is called to create an object. So, we will put here
everything we want to happen when our line tool begins. </translate>

self.view = FreeCADGui.ActiveDocument.ActiveView

<translate> In a class, you usually want to append self. before a variable name,
so it will be easily accessible to all functions inside and outside that class.
Here, we will use self.view to access and manipulate the active 3D view.
</translate>

self.stack = []

<translate> Here we create an empty list that will contain the 3D points sent by
the getpoint function. </translate>

self.callback = self.view.addEventCallbackPivy(SoMouseButtonEvent.getClassTypeId(),self.getpoint

<translate> This is the important part: Since it is actually a coin3D
(http://www.coin3d.org/) scene, the FreeCAD uses coin callback mechanism,
that allows a function to be called everytime a certain scene event happens. In
our case, we are creating a callback for SoMouseButtonEvent
(http://doc.coin3d.org/Coin/group__events.html) events, and we bind it to the
getpoint function. Now, everytime a mouse button is pressed or released, the
getpoint function will be executed.

Note that there is also an alternative to addEventCallbackPivy() called
addEventCallback() which dispenses the use of pivy. But since pivy is a very
efficient and natural way to access any part of the coin scene, it is much better
to use it as much as you can! </translate>

def getpoint(self,event_cb):

<translate> Now we define the getpoint function, that will be executed when a
mouse button is pressed in a 3D view. This function will receive an argument,
that we will call event_cb. From this event callback we can access the event

Manual - FreeCAD Documentation

159 von 244

object, which contains several pieces of information (mode info here (/wiki
/index.php?title=Code_snippets#Observing_mouse_events_in_the_3D_viewer_via_Python)).
</translate>

if event.getState() == SoMouseButtonEvent.DOWN:

<translate> The getpoint function will be called when a mouse button is
pressed or released. But we want to pick a 3D point only when pressed
(otherwise we would get two 3D points very close to each other). So we must
check for that here. </translate>

pos = event.getPosition()

<translate> Here we get the screen coordinates of the mouse cursor
</translate>

point = self.view.getPoint(pos[0],pos[1])

<translate> This function gives us a FreeCAD vector (x,y,z) containing the 3D
point that lies on the focal plane, just under our mouse cursor. If you are in
camera view, imagine a ray coming from the camera, passing through the
mouse cursor, and hitting the focal plane. There is our 3D point. If we are in
orthogonal view, the ray is parallel to the view direction. </translate>

self.stack.append(point)

<translate> We add our new point to the stack </translate>

if len(self.stack) == 2:

<translate> Do we have enough points already? if yes, then let's draw the line!
</translate>

l = Part.Line(self.stack[0],self.stack[1])

<translate> Here we use the function Line() from the Part Module (/wiki
/index.php?title=Part_Module) that creates a line from two FreeCAD vectors.
Everything we create and modify inside the Part module, stays in the Part
module. So, until now, we created a Line Part. It is not bound to any object of
our active document, so nothing appears on the screen. </translate>

shape = l.toShape()

<translate> The FreeCAD document can only accept shapes from the Part
module. Shapes are the most generic type of the Part module. So, we must
convert our line to a shape before adding it to the document. </translate>

Part.show(shape)

<translate> The Part module has a very handy show() function that creates a
new object in the document and binds a shape to it. We could also have
created a new object in the document first, then bound the shape to it
manually. </translate>

self.view.removeEventCallbackPivy(SoMouseButtonEvent.getClassTypeId(),self.callback)

<translate> Since we are done with our line, let's remove the callback
mechanism, that consumes precious CPU cycles.

Testing & Using the script
Now, let's save our script to some place where the FreeCAD python interpreter

Manual - FreeCAD Documentation

160 von 244

will find it. When importing modules, the interpreter will look in the following
places: the python installation paths, the FreeCAD bin directory, and all
FreeCAD modules directories. So, the best solution is to create a new directory
in one of the FreeCAD Mod directories (/wiki
/index.php?title=Installing_more_workbenches), and to save our script in it.
For example, let's make a "MyScripts" directory, and save our script as
"exercise.py".

Now, everything is ready, let's start FreeCAD, create a new document, and, in
the python interpreter, issue: </translate>

import exercise

<translate> If no error message appear, that means our exercise script has
been loaded. We can now check its contents with: </translate>

dir(exercise)

<translate> The command dir() is a built-in python command that lists the
contents of a module. We can see that our line() class is there, waiting for us.
Now let's test it: </translate>

exercise.line()

<translate> Then, click two times in the 3D view, and bingo, here is our line! To
do it again, just type exercise.line() again, and again, and again... Feels great,
no?

Registering the script in the FreeCAD interface
Now, for our new line tool to be really cool, it should have a button on the
interface, so we don't need to type all that stuff everytime. The easiest way is
to transform our new MyScripts directory into a full FreeCAD workbench. It is
easy, all that is needed is to put a file called InitGui.py inside your MyScripts
directory. The InitGui.py will contain the instructions to create a new
workbench, and add our new tool to it. Besides that we will also need to
transform a bit our exercise code, so the line() tool is recognized as an official
FreeCAD command. Let's start by making an InitGui.py file, and write the
following code in it: </translate>

class MyWorkbench (Workbench):

MenuText = "MyScripts"

def Initialize(self):

import exercise

 commandslist = ["line"]

self.appendToolbar("My Scripts",commandslist)

Gui.addWorkbench(MyWorkbench())

<translate> By now, you should already understand the above script by
yourself, I think: We create a new class that we call MyWorkbench, we give it a
title (MenuText), and we define an Initialize() function that will be executed
when the workbench is loaded into FreeCAD. In that function, we load in the
contents of our exercise file, and append the FreeCAD commands found inside
to a command list. Then, we make a toolbar called "My Scripts" and we assign
our commands list to it. Currently, of course, we have only one tool, so our
command list contains only one element. Then, once our workbench is ready,
we add it to the main interface.

But this still won't work, because a FreeCAD command must be formatted in a
certain way to work. So we will need to transform a bit our line() tool. Our new
exercise.py script will now look like this: </translate>

Manual - FreeCAD Documentation

161 von 244

< previous: Code snippets (/wiki/index.php?title=Code_snippets)
next: Dialog creation > (/wiki/index.php?title=Dialog_creation)

import FreeCADGui, Part

from pivy.coin import *

class line:

"this class will create a line after the user clicked 2 points on the screen"

def Activated(self):

self.view = FreeCADGui.ActiveDocument.ActiveView

self.stack = []

self.callback = self.view.addEventCallbackPivy(SoMouseButtonEvent.getClassTypeId(),self

def getpoint(self,event_cb):

event = event_cb.getEvent()

if event.getState() == SoMouseButtonEvent.DOWN:

 pos = event.getPosition()

 point = self.view.getPoint(pos[0],pos[1])

self.stack.append(point)

if len(self.stack) == 2:

 l = Part.Line(self.stack[0],self.stack[1])

 shape = l.toShape()

Part.show(shape)

self.view.removeEventCallbackPivy(SoMouseButtonEvent.getClassTypeId(),self.callback

def GetResources(self):

return {'Pixmap' : 'path_to_an_icon/line_icon.png', 'MenuText': 'Line', 'ToolTip': 'Creates a line b

FreeCADGui.addCommand('line', line())

<translate> What we did here is transform our __init__() function into an
Activated() function, because when FreeCAD commands are run, they
automatically execute the Activated() function. We also added a GetResources()
function, that informs FreeCAD where it can find an icon for the tool, and what
will be the name and tooltip of our tool. Any jpg, png or svg image will work as
an icon, it can be any size, but it is best to use a size that is close to the final
aspect, like 16x16, 24x24 or 32x32. Then, we add the line() class as an official
FreeCAD command with the addCommand() method.

That's it, we now just need to restart FreeCAD and we'll have a nice new
workbench with our brand new line tool!

So you want more?
If you liked this exercise, why not try to improve this little tool? There are many
things that can be done, like for example:

Add user feedback: until now we did a very bare tool, the user might be a
bit lost when using it. So we could add some feedback, telling him what to
do next. For example, you could issue messages to the FreeCAD console.
Have a look in the FreeCAD.Console module
Add a possibility to type the 3D points coordinates manually. Look at the
python input() function, for example
Add the possibility to add more than 2 points
Add events for other things: Now we just check for Mouse button events,
what if we would also do something when the mouse is moved, like
displaying current coordinates?
Give a name to the created object

Don't hesitate to write your questions or ideas on the forum
(http://forum.freecadweb.org/)!

Index
(/wiki/index.php?title=Online_Help_Toc)

</translate>

Manual - FreeCAD Documentation

162 von 244

<translate> In this page we will show how to build a simple Qt Dialog with Qt
Designer (http://qt-project.org/doc/qt-4.8/designer-manual.html), Qt's official
tool for designing interfaces, then convert it to python code, then use it inside
FreeCAD. I'll assume in the example that you know how to edit and run python
scripts already, and that you can do simple things in a terminal window such
as navigate, etc. You must also have, of course, pyqt installed.

Designing the dialog
In CAD applications, designing a good UI (User Interface) is very important.
About everything the user will do will be through some piece of interface:
reading dialog boxes, pressing buttons, choosing between icons, etc. So it is
very important to think carefully to what you want to do, how you want the
user to behave, and how will be the workflow of your action.

There are a couple of concepts to know when designing interface:

Modal/non-modal dialogs (http://en.wikipedia.org/wiki/Modal_window): A
modal dialog appears in front of your screen, stopping the action of the
main window, forcing the user to respond to the dialog, while a non-modal
dialog doesn't stop you from working on the main window. In some case
the first is better, in other cases not.
Identifying what is required and what is optional: Make sure the user
knows what he must do. Label everything with proper description, use
tooltips, etc.
Separating commands from parameters: This is usually done with buttons
and text input fields. The user knows that clicking a button will produce an
action while changing a value inside a text field will change a parameter
somewhere. Nowadays, though, users usually know well what is a button,
what is an input field, etc. The interface toolkit we are using, Qt, is a state-
of-the-art toolkit, and we won't have to worry much about making things
clear, since they will already be very clear by themselves.

So, now that we have well defined what we will do, it's time to open the qt
designer. Let's design a very simple dialog, like this:

 (/wiki/index.php?title=File:Qttestdialog.jpg)

We will then use this dialog in FreeCAD to produce a nice rectangular plane.
You might find it not very useful to produce nice rectangular planes, but it will
be easy to change it later to do more complex things. When you open it, Qt
Designer looks like this:

Manual - FreeCAD Documentation

163 von 244

(/wiki/index.php?title=File:Qtdesigner-screenshot.jpg)

It is very simple to use. On the left bar you have elements that can be dragged
on your widget. On the right side you have properties panels displaying all
kinds of editable properties of selected elements. So, begin with creating a
new widget. Select "Dialog without buttons", since we don't want the default
Ok/Cancel buttons. Then, drag on your widget 3 labels, one for the title, one for
writing "Height" and one for writing "Width". Labels are simple texts that
appear on your widget, just to inform the user. If you select a label, on the
right side will appear several properties that you can change if you want, such
as font style, height, etc.

Then, add 2 LineEdits, which are text fields that the user can fill in, one for the
height and one for the width. Here too, we can edit properties. For example,
why not set a default value? For example 1.00 for each. This way, when the user
will see the dialog, both values will be filled already and if he is satisfied he
can directly press the button, saving precious time. Then, add a PushButton,
which is the button the user will need to press after he filled the 2 fields.

Note that I choosed here very simple controls, but Qt has many more options,
for example you could use Spinboxes instead of LineEdits, etc... Have a look at
what is available, you will surely have other ideas.

That's about all we need to do in Qt Designer. One last thing, though, let's
rename all our elements with easier names, so it will be easier to identify them
in our scripts:

 (/wiki

/index.php?title=File:Qtpropeditor.jpg) </translate> <translate>

Manual - FreeCAD Documentation

164 von 244

Converting our dialog to python
</translate> <translate> Now, let's save our widget somewhere. It will be saved
as an .ui file, that we will easily convert to python script with pyuic. On
windows, the pyuic program is bundled with pyqt (to be verified), on linux you
probably will need to install it separately from your package manager (on
debian-based systems, it is part of the pyqt4-dev-tools package). To do the
conversion, you'll need to open a terminal window (or a command prompt
window on windows), navigate to where you saved your .ui file, and issue:
</translate>

pyuic mywidget.ui > mywidget.py

<translate> Into Windows pyuic.py are located in "C:\Python27\Lib\site-
packages\PyQt4\uic\pyuic.py" For create batch file "compQt4.bat: </translate>

@"C:\Python27\python" "C:\Python27\Lib\site-packages\PyQt4\uic\pyuic.py" -x %1.ui > %1.py

<translate> In the console Dos type without extension </translate>

compQt4 myUiFile

<translate> Into Linux : to do </translate>

<translate> Since FreeCAD progressively moved away from PyQt after version
0.13, in favour of PySide (http://qt-project.org/wiki/PySide) (Choice your
PySide install building PySide (http://pyside.readthedocs.org/en/latest
/building/)), to make the file based on PySide now you have to use:

</translate>

pyside-uic mywidget.ui -o mywidget.py

<translate> Into Windows uic.py are located in "C:\Python27\Lib\site-packages
\PySide\scripts\uic.py" For create batch file "compSide.bat":

@"C:\Python27\python" "C:\Python27\Lib\site-packages\PySide\scripts\uic.py" %1.ui > %1.py

In the console Dos type without extension

compSide myUiFile

Into Linux : to do

On some systems the program is called pyuic4 instead of pyuic. This will simply
convert the .ui file into a python script. If we open the mywidget.py file, its
contents are very easy to understand: </translate>

Manual - FreeCAD Documentation

165 von 244

from PySide import QtCore, QtGui

class Ui_Dialog(object):

def setupUi(self, Dialog):

Dialog.setObjectName("Dialog")

Dialog.resize(187, 178)

self.title = QtGui.QLabel(Dialog)

self.title.setGeometry(QtCore.QRect(10, 10, 271, 16))

self.title.setObjectName("title")

self.label_width = QtGui.QLabel(Dialog)

...

self.retranslateUi(Dialog)

QtCore.QMetaObject.connectSlotsByName(Dialog)

def retranslateUi(self, Dialog):

Dialog.setWindowTitle(QtGui.QApplication.translate("Dialog", "Dialog", None, QtGui

self.title.setText(QtGui.QApplication.translate("Dialog", "Plane-O-Matic", None,

...

<translate> As you see it has a very simple structure: a class named Ui_Dialog
is created, that stores the interface elements of our widget. That class has two
methods, one for setting up the widget, and one for translating its contents,
that is part of the general Qt mechanism for translating interface elements.
The setup method simply creates, one by one, the widgets as we defined them
in Qt Designer, and sets their options as we decided earlier. Then, the whole
interface gets translated, and finally, the slots get connected (we'll talk about
that later).

We can now create a new widget, and use this class to create its interface. We
can already see our widget in action, by putting our mywidget.py file in a place
where FreeCAD will find it (in the FreeCAD bin directory, or in any of the Mod
subdirectories), and, in the FreeCAD python interpreter, issue: </translate>

from PySide import QtGui

import mywidget

d = QtGui.QWidget()

d.ui = mywidget.Ui_Dialog()

d.ui.setupUi(d)

d.show()

<translate> And our dialog will appear! Note that our python interpreter is still
working, we have a non-modal dialog. So, to close it, we can (apart from
clicking its close icon, of course) issue: </translate>

d.hide()

<translate>

Making our dialog do something
Now that we can show and hide our dialog, we just need to add one last part:
To make it do something! If you play a bit with Qt designer, you'll quickly
discover a whole section called "signals and slots". Basically, it works like this:
elements on your widgets (in Qt terminology, those elements are themselves
widgets) can send signals. Those signals differ according to the widget type.
For example, a button can send a signal when it is pressed and when it is
released. Those signals can be connected to slots, which can be special
functionality of other widgets (for example a dialog has a "close" slot to which
you can connect the signal from a close button), or can be custom functions.
The PyQt Reference Documentation (http://www.riverbankcomputing.co.uk
/static/Docs/PyQt4/html/classes.html) lists all the qt widgets, what they can
do, what signals they can send, etc...

What we will do here, is to create a new function that will create a plane based

Manual - FreeCAD Documentation

166 von 244

on height and width, and to connect that function to the pressed signal
emitted by our "Create!" button. So, let's begin with importing our FreeCAD
modules, by putting the following line at the top of the script, where we
already import QtCore and QtGui: </translate>

import FreeCAD, Part

<translate> Then, let's add a new function to our Ui_Dialog class: </translate>

def createPlane(self):

try:

first we check if valid numbers have been entered

 w = float(self.width.text())

 h = float(self.height.text())

except ValueError:

print "Error! Width and Height values must be valid numbers!"

else:

create a face from 4 points

 p1 = FreeCAD.Vector(0,0,0)

 p2 = FreeCAD.Vector(w,0,0)

 p3 = FreeCAD.Vector(w,h,0)

 p4 = FreeCAD.Vector(0,h,0)

 pointslist = [p1,p2,p3,p4,p1]

 mywire = Part.makePolygon(pointslist)

 myface = Part.Face(mywire)

Part.show(myface)

self.hide()

<translate> Then, we need to inform Qt to connect the button to the function,
by placing the following line just before
QtCore.QMetaObject.connectSlotsByName(Dialog): </translate>

QtCore.QObject.connect(self.create,QtCore.SIGNAL("pressed()"),self.createPlane)

<translate> This, as you see, connects the pressed() signal of our create object
(the "Create!" button), to a slot named createPlane, which we just defined.
That's it! Now, as a final touch, we can add a little function to create the dialog,
it will be easier to call. Outside the Ui_Dialog class, let's add this code:
</translate>

class plane():

def __init__(self):

self.d = QtGui.QWidget()

self.ui = Ui_Dialog()

self.ui.setupUi(self.d)

self.d.show()

<translate> (Python reminder: the __init__ method of a class is automatically
executed whenever a new object is created!) Then, from FreeCAD, we only need
to do: </translate>

import mywidget

myDialog = mywidget.plane()

<translate> That's all Folks... Now you can try all kinds of things, like for
example inserting your widget in the FreeCAD interface (see the Code snippets
(/wiki/index.php?title=Code_snippets) page), or making much more advanced
custom tools, by using other elements on your widget.

The complete script
This is the complete script, for reference: </translate>

Manual - FreeCAD Documentation

167 von 244

-*- coding: utf-8 -*-

Form implementation generated from reading ui file 'mywidget.ui'

#

Created: Mon Jun 1 19:09:10 2009

by: PyQt4 UI code generator 4.4.4

Modified for PySide 16:02:2015

WARNING! All changes made in this file will be lost!

from PySide import QtCore, QtGui

import FreeCAD, Part

class Ui_Dialog(object):

def setupUi(self, Dialog):

Dialog.setObjectName("Dialog")

Dialog.resize(187, 178)

self.title = QtGui.QLabel(Dialog)

self.title.setGeometry(QtCore.QRect(10, 10, 271, 16))

self.title.setObjectName("title")

self.label_width = QtGui.QLabel(Dialog)

self.label_width.setGeometry(QtCore.QRect(10, 50, 57, 16))

self.label_width.setObjectName("label_width")

self.label_height = QtGui.QLabel(Dialog)

self.label_height.setGeometry(QtCore.QRect(10, 90, 57, 16))

self.label_height.setObjectName("label_height")

self.width = QtGui.QLineEdit(Dialog)

self.width.setGeometry(QtCore.QRect(60, 40, 111, 26))

self.width.setObjectName("width")

self.height = QtGui.QLineEdit(Dialog)

self.height.setGeometry(QtCore.QRect(60, 80, 111, 26))

self.height.setObjectName("height")

self.create = QtGui.QPushButton(Dialog)

self.create.setGeometry(QtCore.QRect(50, 140, 83, 26))

self.create.setObjectName("create")

self.retranslateUi(Dialog)

QtCore.QObject.connect(self.create,QtCore.SIGNAL("pressed()"),self.createPlane)

QtCore.QMetaObject.connectSlotsByName(Dialog)

def retranslateUi(self, Dialog):

Dialog.setWindowTitle(QtGui.QApplication.translate("Dialog", "Dialog", None, QtGui

self.title.setText(QtGui.QApplication.translate("Dialog", "Plane-O-Matic", None, QtGui

self.label_width.setText(QtGui.QApplication.translate("Dialog", "Width", None, QtGui

self.label_height.setText(QtGui.QApplication.translate("Dialog", "Height", None, QtGui

self.create.setText(QtGui.QApplication.translate("Dialog", "Create!", None, QtGui.

def createPlane(self):

try:

first we check if valid numbers have been entered

 w = float(self.width.text())

 h = float(self.height.text())

except ValueError:

print "Error! Width and Height values must be valid numbers!"

else:

create a face from 4 points

 p1 = FreeCAD.Vector(0,0,0)

 p2 = FreeCAD.Vector(w,0,0)

 p3 = FreeCAD.Vector(w,h,0)

 p4 = FreeCAD.Vector(0,h,0)

 pointslist = [p1,p2,p3,p4,p1]

 mywire = Part.makePolygon(pointslist)

 myface = Part.Face(mywire)

Part.show(myface)

class plane():

def __init__(self):

self.d = QtGui.QWidget()

self.ui = Ui_Dialog()

self.ui.setupUi(self.d)

self.d.show()

<translate>

Manual - FreeCAD Documentation

168 von 244

Creation of a dialog with buttons

Method 1

An example of a dialog box complete with its connections. </translate>

Manual - FreeCAD Documentation

169 von 244

-*- coding: utf-8 -*-

Create by flachyjoe

from PySide import QtCore, QtGui

try:

 _fromUtf8 = QtCore.QString.fromUtf8

except AttributeError:

def _fromUtf8(s):

return s

try:

 _encoding = QtGui.QApplication.UnicodeUTF8

def _translate(context, text, disambig):

return QtGui.QApplication.translate(context, text, disambig, _encoding)

except AttributeError:

def _translate(context, text, disambig):

return QtGui.QApplication.translate(context, text, disambig)

class Ui_MainWindow(object):

def __init__(self, MainWindow):

self.window = MainWindow

MainWindow.setObjectName(_fromUtf8("MainWindow"))

MainWindow.resize(400, 300)

self.centralWidget = QtGui.QWidget(MainWindow)

self.centralWidget.setObjectName(_fromUtf8("centralWidget"))

self.pushButton = QtGui.QPushButton(self.centralWidget)

self.pushButton.setGeometry(QtCore.QRect(30, 170, 93, 28))

self.pushButton.setObjectName(_fromUtf8("pushButton"))

self.pushButton.clicked.connect(self.on_pushButton_clicked) #connection pushButton

self.lineEdit = QtGui.QLineEdit(self.centralWidget)

self.lineEdit.setGeometry(QtCore.QRect(30, 40, 211, 22))

self.lineEdit.setObjectName(_fromUtf8("lineEdit"))

self.lineEdit.returnPressed.connect(self.on_lineEdit_clicked) #connection lineEdit

self.checkBox = QtGui.QCheckBox(self.centralWidget)

self.checkBox.setGeometry(QtCore.QRect(30, 90, 81, 20))

self.checkBox.setChecked(True)

self.checkBox.setObjectName(_fromUtf8("checkBoxON"))

self.checkBox.clicked.connect(self.on_checkBox_clicked) #connection checkBox

self.radioButton = QtGui.QRadioButton(self.centralWidget)

self.radioButton.setGeometry(QtCore.QRect(30, 130, 95, 20))

self.radioButton.setObjectName(_fromUtf8("radioButton"))

self.radioButton.clicked.connect(self.on_radioButton_clicked) #connection radioButton

MainWindow.setCentralWidget(self.centralWidget)

self.menuBar = QtGui.QMenuBar(MainWindow)

self.menuBar.setGeometry(QtCore.QRect(0, 0, 400, 26))

self.menuBar.setObjectName(_fromUtf8("menuBar"))

MainWindow.setMenuBar(self.menuBar)

self.mainToolBar = QtGui.QToolBar(MainWindow)

self.mainToolBar.setObjectName(_fromUtf8("mainToolBar"))

MainWindow.addToolBar(QtCore.Qt.TopToolBarArea, self.mainToolBar)

self.statusBar = QtGui.QStatusBar(MainWindow)

self.statusBar.setObjectName(_fromUtf8("statusBar"))

MainWindow.setStatusBar(self.statusBar)

self.retranslateUi(MainWindow)

def retranslateUi(self, MainWindow):

MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow", None))

self.pushButton.setText(_translate("MainWindow", "OK", None))

self.lineEdit.setText(_translate("MainWindow", "tyty", None))

self.checkBox.setText(_translate("MainWindow", "CheckBox", None))

self.radioButton.setText(_translate("MainWindow", "RadioButton", None))

Manual - FreeCAD Documentation

170 von 244

def on_checkBox_clicked(self):

if self.checkBox.checkState()==0:

App.Console.PrintMessage(str(self.checkBox.checkState())+" CheckBox KO\r\n")

else:

App.Console.PrintMessage(str(self.checkBox.checkState())+" CheckBox OK\r\n")

App.Console.PrintMessage(str(self.lineEdit.setText("tititi"))+" LineEdit\r\n") #write text to th

str(self.lineEdit.setText("tititi")) #écrit le texte dans la fenêtre lineEdit

App.Console.PrintMessage(str(self.lineEdit.displayText())+" LineEdit\r\n")

def on_radioButton_clicked(self):

if self.radioButton.isChecked():

App.Console.PrintMessage(str(self.radioButton.isChecked())+" Radio OK\r\n")

else:

App.Console.PrintMessage(str(self.radioButton.isChecked())+" Radio KO\r\n")

def on_lineEdit_clicked(self):

if self.lineEdit.textChanged():

App.Console.PrintMessage(str(self.lineEdit.displayText())+" LineEdit Display\r\n"

def on_pushButton_clicked(self):

App.Console.PrintMessage("Terminé\r\n")

self.window.hide()

MainWindow = QtGui.QMainWindow()

ui = Ui_MainWindow(MainWindow)

MainWindow.show()

<translate> Here the same window but with an icon on each button.

Download associated icons (Click rigth "Copy the image below ...)"

 (/wiki/index.php?title=File:Icone01.png) (/wiki

/index.php?title=File:Icone02.png) (/wiki

/index.php?title=File:Icone03.png)

</translate>

Manual - FreeCAD Documentation

171 von 244

-*- coding: utf-8 -*-

from PySide import QtCore, QtGui

try:

 _fromUtf8 = QtCore.QString.fromUtf8

except AttributeError:

def _fromUtf8(s):

return s

try:

 _encoding = QtGui.QApplication.UnicodeUTF8

def _translate(context, text, disambig):

return QtGui.QApplication.translate(context, text, disambig, _encoding)

except AttributeError:

def _translate(context, text, disambig):

return QtGui.QApplication.translate(context, text, disambig)

class Ui_MainWindow(object):

def __init__(self, MainWindow):

self.window = MainWindow

 path = FreeCAD.ConfigGet("UserAppData")

path = FreeCAD.ConfigGet("AppHomePath")

MainWindow.setObjectName(_fromUtf8("MainWindow"))

MainWindow.resize(400, 300)

self.centralWidget = QtGui.QWidget(MainWindow)

self.centralWidget.setObjectName(_fromUtf8("centralWidget"))

self.pushButton = QtGui.QPushButton(self.centralWidget)

self.pushButton.setGeometry(QtCore.QRect(30, 170, 93, 28))

self.pushButton.setObjectName(_fromUtf8("pushButton"))

self.pushButton.clicked.connect(self.on_pushButton_clicked) #connection pushButton

self.lineEdit = QtGui.QLineEdit(self.centralWidget)

self.lineEdit.setGeometry(QtCore.QRect(30, 40, 211, 22))

self.lineEdit.setObjectName(_fromUtf8("lineEdit"))

self.lineEdit.returnPressed.connect(self.on_lineEdit_clicked) #connection lineEdit

self.checkBox = QtGui.QCheckBox(self.centralWidget)

self.checkBox.setGeometry(QtCore.QRect(30, 90, 100, 20))

self.checkBox.setChecked(True)

self.checkBox.setObjectName(_fromUtf8("checkBoxON"))

self.checkBox.clicked.connect(self.on_checkBox_clicked) #connection checkBox

self.radioButton = QtGui.QRadioButton(self.centralWidget)

self.radioButton.setGeometry(QtCore.QRect(30, 130, 95, 20))

self.radioButton.setObjectName(_fromUtf8("radioButton"))

self.radioButton.clicked.connect(self.on_radioButton_clicked) #connection radioButton

MainWindow.setCentralWidget(self.centralWidget)

self.menuBar = QtGui.QMenuBar(MainWindow)

self.menuBar.setGeometry(QtCore.QRect(0, 0, 400, 26))

self.menuBar.setObjectName(_fromUtf8("menuBar"))

MainWindow.setMenuBar(self.menuBar)

self.mainToolBar = QtGui.QToolBar(MainWindow)

self.mainToolBar.setObjectName(_fromUtf8("mainToolBar"))

MainWindow.addToolBar(QtCore.Qt.TopToolBarArea, self.mainToolBar)

self.statusBar = QtGui.QStatusBar(MainWindow)

self.statusBar.setObjectName(_fromUtf8("statusBar"))

MainWindow.setStatusBar(self.statusBar)

self.retranslateUi(MainWindow)

Affiche un icone sur le bouton PushButton

self.image_01 = "C:\Program Files\FreeCAD0.13\Icone01.png" # adapt the icon name

self.image_01 = path+"Icone01.png" # adapt the name of the icon

 icon01 = QtGui.QIcon()

 icon01.addPixmap(QtGui.QPixmap(self.image_01),QtGui.QIcon.Normal, QtGui.QIcon.Off

self.pushButton.setIcon(icon01)

Manual - FreeCAD Documentation

172 von 244

self.pushButton.setLayoutDirection(QtCore.Qt.RightToLeft) # This command reverses the direction o

Affiche un icone sur le bouton RadioButton

self.image_02 = "C:\Program Files\FreeCAD0.13\Icone02.png" # adapt the name of the icon

self.image_02 = path+"Icone02.png" # adapter le nom de l'icone

 icon02 = QtGui.QIcon()

 icon02.addPixmap(QtGui.QPixmap(self.image_02),QtGui.QIcon.Normal, QtGui.QIcon.Off

self.radioButton.setIcon(icon02)

self.radioButton.setLayoutDirection(QtCore.Qt.RightToLeft) # This command reverses the directi

Affiche un icone sur le bouton CheckBox

self.image_03 = "C:\Program Files\FreeCAD0.13\Icone03.png" # the name of the icon

self.image_03 = path+"Icone03.png" # adapter le nom de l'icone

 icon03 = QtGui.QIcon()

 icon03.addPixmap(QtGui.QPixmap(self.image_03),QtGui.QIcon.Normal, QtGui.QIcon.Off

self.checkBox.setIcon(icon03)

self.checkBox.setLayoutDirection(QtCore.Qt.RightToLeft) # This command reverses the direction o

def retranslateUi(self, MainWindow):

MainWindow.setWindowTitle(_translate("MainWindow", "FreeCAD", None))

self.pushButton.setText(_translate("MainWindow", "OK", None))

self.lineEdit.setText(_translate("MainWindow", "tyty", None))

self.checkBox.setText(_translate("MainWindow", "CheckBox", None))

self.radioButton.setText(_translate("MainWindow", "RadioButton", None))

def on_checkBox_clicked(self):

if self.checkBox.checkState()==0:

App.Console.PrintMessage(str(self.checkBox.checkState())+" CheckBox KO\r\n")

else:

App.Console.PrintMessage(str(self.checkBox.checkState())+" CheckBox OK\r\n")

App.Console.PrintMessage(str(self.lineEdit.setText("tititi"))+" LineEdit\r\n") # write text

str(self.lineEdit.setText("tititi")) #écrit le texte dans la fenêtre lineEdit

App.Console.PrintMessage(str(self.lineEdit.displayText())+" LineEdit\r\n")

def on_radioButton_clicked(self):

if self.radioButton.isChecked():

App.Console.PrintMessage(str(self.radioButton.isChecked())+" Radio OK\r\n")

else:

App.Console.PrintMessage(str(self.radioButton.isChecked())+" Radio KO\r\n")

def on_lineEdit_clicked(self):

if self.lineEdit.textChanged():

App.Console.PrintMessage(str(self.lineEdit.displayText())+" LineEdit Display\r\n"

def on_pushButton_clicked(self):

App.Console.PrintMessage("Terminé\r\n")

self.window.hide()

MainWindow = QtGui.QMainWindow()

ui = Ui_MainWindow(MainWindow)

MainWindow.show()

<translate> Here the code to display the icon on the pushButton, change the
name for another button, (radioButton, checkBox) and the path to the icon.
</translate>

Affiche un icône sur le bouton PushButton

self.image_01 = "C:\Program Files\FreeCAD0.13\icone01.png" # the name of the icon

self.image_01 = path+"icone01.png" # the name of the icon

 icon01 = QtGui.QIcon()

 icon01.addPixmap(QtGui.QPixmap(self.image_01),QtGui.QIcon.Normal, QtGui.QIcon.Off

self.pushButton.setIcon(icon01)

self.pushButton.setLayoutDirection(QtCore.Qt.RightToLeft) # This command reverses the direction o

<translate> The command UserAppData gives the user path AppHomePath
gives the installation path of FreeCAD </translate>

path = FreeCAD.ConfigGet("UserAppData")

 path = FreeCAD.ConfigGet("AppHomePath")

<translate> This command reverses the horizontal button, right to left.
</translate>

Manual - FreeCAD Documentation

173 von 244

self.pushButton.setLayoutDirection(QtCore.Qt.RightToLeft) # This command reverses the direction of the bu

<translate>

Method 2

Another method to display a window, here by creating a file QtForm.py which
contains the header program (module called with import QtForm), and a
second module that contains the code window all these accessories, and your
code (the calling module).

This method requires two separate files, but allows to shorten your program
using the file ' ' QtForm.py ' ' import. Then distribute the two files together, they
are inseparable.

The file QtForm.py </translate>

-*- coding: utf-8 -*-

Create by flachyjoe

from PySide import QtCore, QtGui

try:

 _fromUtf8 = QtCore.QString.fromUtf8

except AttributeError:

def _fromUtf8(s):

return s

try:

 _encoding = QtGui.QApplication.UnicodeUTF8

def _translate(context, text, disambig):

return QtGui.QApplication.translate(context, text, disambig, _encoding)

except AttributeError:

def _translate(context, text, disambig):

return QtGui.QApplication.translate(context, text, disambig)

class Form(object):

def __init__(self, title, width, height):

self.window = QtGui.QMainWindow()

self.title=title

self.window.setObjectName(_fromUtf8(title))

self.window.setWindowTitle(_translate(self.title, self.title, None))

self.window.resize(width, height)

def show(self):

self.createUI()

self.retranslateUI()

self.window.show()

def setText(self, control, text):

 control.setText(_translate(self.title, text, None))

<translate> The appellant, file that contains the window and your code.

The file my_file.py

The connections are to do, a good exercise. </translate>

Manual - FreeCAD Documentation

174 von 244

-*- coding: utf-8 -*-

Create by flachyjoe

from PySide import QtCore, QtGui

import QtForm

class myForm(QtForm.Form):

def createUI(self):

self.centralWidget = QtGui.QWidget(self.window)

self.window.setCentralWidget(self.centralWidget)

self.pushButton = QtGui.QPushButton(self.centralWidget)

self.pushButton.setGeometry(QtCore.QRect(30, 170, 93, 28))

self.pushButton.clicked.connect(self.on_pushButton_clicked)

self.lineEdit = QtGui.QLineEdit(self.centralWidget)

self.lineEdit.setGeometry(QtCore.QRect(30, 40, 211, 22))

self.checkBox = QtGui.QCheckBox(self.centralWidget)

self.checkBox.setGeometry(QtCore.QRect(30, 90, 81, 20))

self.checkBox.setChecked(True)

self.radioButton = QtGui.QRadioButton(self.centralWidget)

self.radioButton.setGeometry(QtCore.QRect(30, 130, 95, 20))

def retranslateUI(self):

self.setText(self.pushButton, "Fermer")

self.setText(self.lineEdit, "essai de texte")

self.setText(self.checkBox, "CheckBox")

self.setText(self.radioButton, "RadioButton")

def on_pushButton_clicked(self):

self.window.hide()

myWindow=myForm("Fenetre de test",400,300)

myWindow.show()

<translate>

Other example

(/wiki
/index.php?title=File:Qt_Example_00.png)

Qt example 1

Manual - FreeCAD Documentation

175 von 244

(/wiki
/index.php?title=File:Qt_Example_01.png)

Qt example details

Are treated :

icon for window�.
horizontalSlider�.
progressBar horizontal�.
verticalSlider�.
progressBar vertical�.
lineEdit�.
lineEdit�.
doubleSpinBox�.
doubleSpinBox�.
doubleSpinBox��.
buttom��.
buttom��.
radioButtom with icons��.
checkBox with icon checked and unchecked��.
textEdit��.
graphicsView with 2 graphes��.

The code page and the icons Qt_Example (/wiki/index.php?title=Qt_Example)

</translate> <translate>

Use QFileDialog for write the file
Complete code: </translate>

Manual - FreeCAD Documentation

176 von 244

-*- coding: utf-8 -*-

import PySide

from PySide import QtGui ,QtCore

from PySide.QtGui import *

from PySide.QtCore import *

path = FreeCAD.ConfigGet("UserAppData")

try:

SaveName = QFileDialog.getSaveFileName(None,QString.fromLocal8Bit("Save a file txt"),

"here the text displayed on windows

except Exception:

SaveName, Filter = PySide.QtGui.QFileDialog.getSaveFileName(None, "Save a file txt", path

"here the text displayed on windows

if SaveName == "": # if the name file are not

App.Console.PrintMessage("Process aborted"+"\n")

else: # if the name file are sele

App.Console.PrintMessage("Registration of "+SaveName+"\n") # text displayed to Report

try: # detect error ...

 file = open(SaveName, 'w') # open the file selected to

try: # if error detected to writ

here your code

print "here your code"

 file.write(str(1)+"\n") # write the number convert

 file.write("FreeCAD the best") # write the the text with (

except Exception: # if error detected to writ

App.Console.PrintError("Error write file "+"\n") # detect error ... display

finally: # if error detected to writ

 file.close() # if error detected to writ

except Exception:

App.Console.PrintError("Error Open file "+SaveName+"\n") # detect error ... display the text

<translate>

Use QFileDialog for read the file
Complete code: </translate>

Manual - FreeCAD Documentation

177 von 244

-*- coding: utf-8 -*-

import PySide

from PySide import QtGui ,QtCore

from PySide.QtGui import *

from PySide.QtCore import *

path = FreeCAD.ConfigGet("UserAppData")

OpenName = ""

try:

OpenName = QFileDialog.getOpenFileName(None,QString.fromLocal8Bit("Read a file txt"),

"here the text displayed on windows

except Exception:

OpenName, Filter = PySide.QtGui.QFileDialog.getOpenFileName(None, "Read a file txt", path

"here the text displayed on windows

if OpenName == "": # if the name file are not

App.Console.PrintMessage("Process aborted"+"\n")

else:

App.Console.PrintMessage("Read "+OpenName+"\n") # text displayed to Report

try: # detect error to read file

 file = open(OpenName, "r") # open the file selected to

try: # detect error ...

here your code

print "here your code"

 op = OpenName.split("/") # decode the path

 op2 = op[-1].split(".") # decode the file name

 nomF = op2[0] # the file name are isolate

App.Console.PrintMessage(str(nomF)+"\n") # the file name are display

for ligne in file: # read the file

 X = ligne.rstrip('\n\r') #.split() # decode the line

print X # print the line in report

(Menu > Edit > preference

except Exception: # if error detected to read

App.Console.PrintError("Error read file "+"\n") # detect error ... display

finally: # if error detected to read

 file.close() # if error detected to read

except Exception: # if one error detected to

App.Console.PrintError("Error in Open the file "+OpenName+"\n") # if one error detected ...

<translate>

Use QColorDialog for get the color
Complete code: </translate>

-*- coding: utf-8 -*-

https://deptinfo-ensip.univ-poitiers.fr/ENS/pyside-docs/PySide/QtGui/QColor.html

import PySide

from PySide import QtGui ,QtCore

from PySide.QtGui import *

from PySide.QtCore import *

path = FreeCAD.ConfigGet("UserAppData")

couleur = QtGui.QColorDialog.getColor()

if couleur.isValid():

 red = int(str(couleur.name()[1:3]),16) # decode hexadecimal to int()

 green = int(str(couleur.name()[3:5]),16) # decode hexadecimal to int()

 blue = int(str(couleur.name()[5:7]),16) # decode hexadecimal to int()

print couleur #

print "hexadecimal ",couleur.name() # color format hexadecimal mode 16

print "Red color ",red # color format decimal

print "Green color ",green # color format decimal

print "Blue color ",blue # color format decimal

<translate>

Some useful commands
</translate>

Manual - FreeCAD Documentation

178 von 244

Here the code to display the icon on the '''pushButton''',

change the name to another button, ('''radioButton, checkBox''') as well as the path to the icon,

Displays an icon on the button PushButton

self.image_01 = "C:\Program Files\FreeCAD0.13\icone01.png" # he name of the icon

self.image_01 = path+"icone01.png" # the name of the icon

 icon01 = QtGui.QIcon()

 icon01.addPixmap(QtGui.QPixmap(self.image_01),QtGui.QIcon.Normal, QtGui.QIcon.Off)

self.pushButton.setIcon(icon01)

self.pushButton.setLayoutDirection(QtCore.Qt.RightToLeft) # This command reverses the direction of

path = FreeCAD.ConfigGet("UserAppData") # gives the user path

 path = FreeCAD.ConfigGet("AppHomePath") # gives the installation path of FreeCAD

This command reverses the horizontal button, right to left

self.pushButton.setLayoutDirection(QtCore.Qt.RightToLeft) # This command reverses the horizontal button

Displays an info button

self.pushButton.setToolTip(_translate("MainWindow", "Quitter la fonction", None)) # Displays an info butt

This function gives a color button

self.pushButton.setStyleSheet("background-color: red") # This function gives a color button

This function gives a color to the text of the button

self.pushButton.setStyleSheet("color : #ff0000") # This function gives a color to the text of the button

combinaison des deux, bouton et texte

self.pushButton.setStyleSheet("color : #ff0000; background-color : #0000ff;") # combination of the two,

replace the icon in the main window

MainWindow.setWindowIcon(QtGui.QIcon('C:\Program Files\FreeCAD0.13\View-C3P.png'))

connects a lineEdit on execute

self.lineEdit.returnPressed.connect(self.execute) # connects a lineEdit on "def execute" after validation

self.lineEdit.textChanged.connect(self.execute) # connects a lineEdit on "def execute" with each keystr

display text in a lineEdit

self.lineEdit.setText(str(val_X)) # Displays the value in the lineEdit (convert to string)

extract the string contained in a lineEdit

 val_X = self.lineEdit.text() # extract the (string) string contained in lineEdit

 val_X = float(val_X0) # converted the string to an floating

 val_X = int(val_X0) # convert the string to an integer

This code allows you to change the font and its attributes

 font = QtGui.QFont()

 font.setFamily("Times New Roman")

 font.setPointSize(10)

 font.setWeight(10)

 font.setBold(True) # same result with tags "your text" (in quotes)

self.label_6.setFont(font)

self.label_6.setObjectName("label_6")

self.label_6.setStyleSheet("color : #ff0000") # This function gives a color to the text

self.label_6.setText(_translate("MainWindow", "Select a view", None))

<translate>

By using the characters with accents, where you get the error :

Several solutions are possible.

UnicodeDecodeError: 'utf8' codec can't decode bytes in position 0-2: invalid
data </translate>

conversion from a lineEdit

App.activeDocument().CopyRight.Text = str(unicode(self.lineEdit_20.text() , 'ISO-8859-1').

DESIGNED_BY = unicode(self.lineEdit_01.text(), 'ISO-8859-1').encode('UTF-8')

<translate> or with the procedure </translate>

def utf8(unio):

return unicode(unio).encode('UTF8')

Manual - FreeCAD Documentation

179 von 244

< previous: Line drawing function (/wiki
/index.php?title=Line_drawing_function)

next: Licence > (/wiki/index.php?title=Licence)

UnicodeEncodeError: 'ascii' codec can't encode character u'\xe9' in position 9:
ordinal not in range(128)

conversion

a = u"Nom de l'élément : "

f.write('''a.encode('iso-8859-1')'''+str(element_)+"\n")

<translate> or with the procedure </translate>

def iso8859(encoder):

return unicode(encoder).encode('iso-8859-1')

<translate> or </translate>

iso8859(unichr(176))

<translate> or </translate>

unichr(ord(176))

<translate> or </translate>

uniteSs = "mm"+iso8859(unichr(178))

print unicode(uniteSs, 'iso8859')

<translate>

Index (/wiki
/index.php?title=Online_Help_Toc)

</translate>

Developing applications for FreeCAD
<translate>

Statement of the main developer
I know that the discussion on the "right" licence for open source occupied a
significant portion of internet bandwidth and so is here the reason why, in my
opinion, FreeCAD should have this one.

I chose the LGPL (http://en.wikipedia.org/wiki/LGPL) for the project and I know
the pro and cons about the LGPL and will give you some reasons for that
decision.

FreeCAD is a mixture of a library and an application, so the GPL would be a
little bit strong for that. It would prevent writing commercial modules for
FreeCAD because it would prevent linking with the FreeCAD base libs. You may
ask why commercial modules at all? Therefore Linux is good example. Would
Linux be so successful when the GNU C Library would be GPL and therefore
prevent linking against non-GPL applications? And although I love the freedom
of Linux, I also want to be able to use the very good NVIDIA 3D graphic driver. I
understand and accept the reason NVIDIA does not wish to give away driver
code. We all work for companies and need payment or at least food. So for me,
a coexistence of open source and closed source software is not a bad thing,
when it obeys the rules of the LGPL. I would like to see someone writing a Catia

Manual - FreeCAD Documentation

180 von 244

import/export processor for FreeCAD and distribute it for free or for some
money. I don't like to force him to give away more than he wants to. That
wouldn't be good neither for him nor for FreeCAD.

Nevertheless this decision is made only for the core system of FreeCAD. Every
writer of an application module may make his own decision.

Licences used in FreeCAD
FreeCAD uses two different licenses, one for the application itself, and one for
the documentation:

Lesser General Public Licence, version 2 or superior (LGPL2+)
(http://en.wikipedia.org/wiki/LGPL)
For the core libs as stated in the .h and .cpp files in src/App src/Gui
src/Base and all modules (/wiki/index.php?title=Workbenches) in
src/Mod and for the executable as stated in the .h and .cpp files in
src/main. The icons and other graphic parts are also LGPL.
Open Publication Licence (http://en.wikipedia.org
/wiki/Open_Publication_License)
For the documentation on http://www.freecadweb.org
(http://www.freecadweb.org) when not marked differently by the
author

See FreeCAD's debian copyright file (http://sourceforge.net/p/free-cad/code
/ci/master/tree/package/debian/copyright) for more details about the
licenses used by the different components found in FreeCAD

Impact of the licences

Private users

Private users can use FreeCAD free of charge and can do basically whatever
they want to do with it: use it, copy it, modify it, redistribute it. They are always
master of their data, they are not forced to update FreeCAD, change their
usage of FreeCAD. Using FreeCAD doesn't bind them to any kind of contract or
obligation.
Professional users

Can use FreeCAD freely, for any kind of private or professional work. They can
customize the application as they wish. They can write open or closed source
extensions to FreeCAD. They are always master of their data, they are not
forced to update FreeCAD, change their usage of FreeCAD. Using FreeCAD
doesn't bind them to any kind of contract or obligation.
Open Source developers

Can use FreeCAD as the groundwork for own extension modules for special
purposes. They can choose either the GPL or the LGPL to allow the use of their
work in proprietary software or not.
Commercial developers

Commercial developers can use FreeCAD as the groundwork for their own
extension modules for special purposes and are not forced to make their
modules open source. They can use all modules which use the LGPL. They are
allowed to distribute FreeCAD along with their proprietary software. They will
get the support of the author(s) as long as it is not a one way street.

Manual - FreeCAD Documentation

181 von 244

< previous: Dialog creation (/wiki/index.php?title=Dialog_creation)

OpenCasCade License side effects (for FreeCAD version 0.13 and
older)
The following is no more applicable since version 0.14, since both FreeCAD and
OpenCasCade are now fully LGPL.

Up to Version 0.13 FreeCAD is delivered as GPL2+, although the source itself is
under LGPL2+. Thats because of linkage of Coin3D (GPL2) and PyQt(GPL).
Starting with 0.14 we will be completely GPL free. PyQt will be replaced by
PySide, and Coin3D was re-licensed under BSD. One problem, we still have to
face, license-wise, the OCTPL (Open CASCADE Technology Public License)
(http://www.opencascade.org/getocc/license/). Its a License mostly LGPL
similar, with certain changes. On of the originators, Roman Lygin, elaborated
on the License on his Blog (http://opencascade.blogspot.de/2008/12/license-
to-kill-license-to-use.html). The home-brew OCTPL license leads to all kind of
side effects for FreeCAD, which where widely discussed on different forums
and mailing lists, e.g. on OpenCasCade forum itself
(http://www.opencascade.org/org/forum/thread_15859/?forum=3). I will link
here some articles for the biggest problems.
GPL2/GPL3/OCTLP incompatibility

We first discovered the problem by a discussion on the FSF
(http://www.fsf.org/) high priority project discussion list
(https://groups.google.com/forum/#!topic/polignu/XRergtwsm80). It was
about a library we look at, which was licensed with GPL3. Since we linked back
then with Coin3D, with GPL2 only, we was not able to adopt that lib. Also the
OCTPL is considered GPL incompatible (http://www.opencascade.org
/occt/faq/). This Libre Graphics World article "LibreDWG drama: the end or the
new beginning?" (http://libregraphicsworld.org/blog/entry/libredwg-drama-
the-end-or-the-new-beginning) shows up the drama of LibreDWG project not
acceptably in FreeCAD or LibreCAD.
Debian

The incompatibility of the OCTPL was discussed on the debian legal list
(http://lists.debian.org/debian-legal/2009/10/msg00000.html) and lead to a
bug report on the FreeCAD package (http://bugs.debian.org/cgi-bin
/bugreport.cgi?bug=617613) which prevent (ignor-tag) the transition from
debian-testing to the main distribution. But its also mentioned thats a
FreeCAD, which is free of GPL code and libs, would be acceptably. With a
re-licensed Coin3D V4 and a substituted PyQt we will hopefully reach GPL free
with the 0.14 release.
Fedora/RedHat non-free

In the Fedora project OpenCasCade is listed "non-free". This means basically it
won't make it into Fedora or RedHat. This means also FreeCAD won't make it
into Fedora/RedHat until OCC is changing its license. Here the links to the
license evaluation:

Discussion on the Fedora-legal-list (http://lists.fedoraproject.org
/pipermail/legal/2011-September/001713.html)
License review entry in the RedHat bug tracker
(https://bugzilla.redhat.com/show_bug.cgi?id=458974#c10)

The main problem they have AFIK is that the OCC license demand non
discriminatory support fees if you want to do paid support. It has nothing to
do with "free" or OpenSource, its all about RedHat's business model!

Manual - FreeCAD Documentation

182 von 244

next: Tracker > (/wiki/index.php?title=Tracker)Index (/wiki
/index.php?title=Online_Help_Toc)

</translate>

<translate> The adress of our bug tracker is:

http://www.freecadweb.org/tracker (http://www.freecadweb.org/tracker)

There you can report bugs, submit feature requests, patches, or request to
merge your branch if you developed something using git. The tracker is divided
into modules, so please be specific and file your request in the appropriate
subsection. In case of doubt, leave it in the "FreeCAD" section.

Please before creating tickets, always first discuss bugs in the Help forum
(http://forum.freecadweb.org/viewforum.php?f=3) and feature requests in the
Open discussion forum (http://forum.freecadweb.org/viewforum.php?f=8).

Reporting bugs
If you think you might have found a bug, you are welcome to report it there so
long as you have first discussed the matter in the appropriate forum. But
before reporting a bug, please check the following items:

Make sure your bug is really a bug, that is, something that should be
working and that is not working. If you are not sure, don't hesitate to
explain your problem on the forum (http://forum.freecadweb.org/) and
ask what to do.
Before submitting anything, read the frequently asked questions (/wiki
/index.php?title=FAQ), do a search on the forum
(http://forum.freecadweb.org/), and make sure the same bug hasn't been
reported before, by doing a search on the bug tracker.
Describe as clearly as possible the problem, and how it can be
reproduced. If we can not verify the bug, we might not be able to fix it.
Include all the information from the "Copy to Clipboard" button in the
Help (menu) -> About FreeCAD dialogue and do so from either the Part or
PartDesign workbench so that your data will include your OCC or OCE
version.
Please file one separate report for each bug.
If you are on a linux system and your bug causes a crash in FreeCAD, you
can try running a debug backtrace: From a terminal run gdb freecad
(assuming package gdb is installed), then, inside gdb, type run . FreeCAD
will then run. After the crash happens, type bt , to get the full backtrace.
Include that backtrace in your bug report.

Requesting features
If you want something to appear in FreeCAD that is not implemented yet, it is
not a bug but a feature request. You can also submit it on the same tracker
(file it as feature request instead of bug), but keep in mind there are no
guarantees that your wish will be fulfilled.

Submitting patches

Manual - FreeCAD Documentation

183 von 244

< previous: Licence (/wiki/index.php?title=Licence)
next: CompileOnWindows > (/wiki
/index.php?title=CompileOnWindows)

In case you have programmed a bug fix, an extension or something else that
can be of public use in FreeCAD, create a patch using the Git diff tool and
submit it on the same tracker (file it as patch).

Requesting merge
If you have created a git branch containing changes that you would like to see
merged into the FreeCAD code, you can ask there to have your branch reviewed
and merged if the FreeCAD developers are OK with it. You must first publish
your branch to a public git repository (github,bitbucket, sourceforge...) and
then give the URL of your branch in your merge request.

Index (/wiki

/index.php?title=Online_Help_Toc)
</translate>

This article explains step by step how to compile FreeCAD on Windows.

See also Compile on Windows with Visual Studio 2013 (/wiki
/index.php?title=Compile_on_Windows_with_VS2013)

Prerequisites

Required programs

Git (http://git-scm.com/) There are a number of alternatives such as
GitCola, Tortoise Git, and others.
CMake (http://www.cmake.org/cmake/resources/software.html) version
2.x.x or Cmake 3.x.x
Python >2.5 (This is only required if NOT using the Libpack. The Libpack
comes with a minimal Python(2.7.x) suitable for compiling and running
FreeCAD)

Source Code

Using Git (Preferred)

To create a local tracking branch and download the source code you need to
open a terminal(command prompt) and cd to the directory you want the
source, then type:

git clone https://github.com/FreeCAD/FreeCAD.git free-cad-code

Compiler

On Windows, the default compiler is M$ Visual Studio, be it the Express or Full
2008, 2012, or 2013 versions. You will also need to install the Windows Platform
SDK to get several required libraries (e.g. Windows.h), though they may not be
required with M$ compilers (either full or express).

For those who want to avoid installing the huge Visual Studio for the mere
purpose of having a compiler, see CompileOnWindows - Reducing Disk
Footprint (/wiki/index.php?title=CompileOnWindows_-
_Reducing_Disk_Footprint).

Manual - FreeCAD Documentation

184 von 244

Note
Though it may be possible to use Cygwin or MinGW gcc it's not tested or ported
so far.

Third Party Libraries

You will need all of the Third Party Libraries (/wiki
/index.php?title=Third_Party_Libraries) to successfully compile FreeCAD. If you
use the M$ compilers it is recommended to install a FreeCAD LibPack
(http://sourceforge.net/projects/free-cad/files/FreeCAD%20LibPack/), which
provides all of the required libraries to build FreeCAD in Windows. You will
need the Libpack for your architecture and compiler. FreeCAD currently
supplies Libpack Version11 for x32 and x64, for VS9 2008, VS11 2012, and VS12
2013.

Optional programs

NSIS (http://sourceforge.net/projects/nsis/) Windows installer (note:
formerly, WiX (http://wixtoolset.org/) installer was used - now under
transition to NSIS) - if you want to make msi installer

System Path Configuration

Inside your system path be sure to set the correct paths to the following
programs:

git (not tortoiseGit, but git.exe) This is necessary for Cmake to properly
update the "About FreeCAD" information in the version.h file which allows
FreeCAD to report the proper version in About FreeCAD from the help
menu.
Optionally you can include the Libpack in your system path. This is useful
if you plan to build multiple configurations/versions of FreeCAD, you will
need to copy less files as explained later in the build process.

To add to your system path:

Start menu -> Right click on Computer -> Properties -> Advanced system
settings
Advanced tab -> Environment Variables...
Add the PATH/TO/GIT to the PATH
It should be separated from the others with a semicolon `;`

Configuration with CMake

The switch to CMake

Warning
Since FreeCAD version 0.9 we have stopped providing .vcproj files.

Currently, FreeCAD uses the CMake build system to generate build and make
files that can be used between different operating systems and compilers. If
you want build former versions of FreeCAD (0.8 and older) see Building older
versions later in this article.

We switched because it became more and more painful to maintain project
files for 30+ build targets and x compilers. CMake gives us the possibility to

Manual - FreeCAD Documentation

185 von 244

support alternative IDEs, like Code::Blocks, Qt Creator and Eclipse CDT. The
main compiler is still M$ VC9 Express, though. But we plan for the future a
build process on Windows without proprietary compiler software.

CMake

The first step to build FreeCAD with CMake is to configure the environment.
There are two ways to do it:

Using the LibPack
Installing all the needed libraries and let CMake find them

The following process will assume you are using the LipPack. The second
option may be discussed in Options for the Build Process.

Configure CMake using GUI

Open the CMake GUI
Specify the source folder
Specify the build folder
Click Configure
Specify the generator according to the IDE that you'll use.

This will begin configuration and should fail because the location of
FREECAD_LIBPACK_DIR is unset.

Expand the FREECAD category and set FREECAD_LIBPACK_DIR to the correct
location
Check FREECAD_USE_EXTERNAL_PIVY
Optionally Check FREECAD_USE_FREETYPE this is required to use the Draft
WB's Shape String functionality
Click Configure again
There should be no errors
Click Generate
Close CMake
Copy libpack\bin folder into the new build folder CMake created

Options for the Build Process

The CMake build system gives us a lot more flexibility over the build process.
That means we can switch on and off some features or modules. It's in a way
like the Linux kernel build. You have a lot of switches to determine the build
process.

Here is the description of some of these switches. They will most likely change
a lot in the future because we want to increase the build flexibility a lot more.

Manual - FreeCAD Documentation

186 von 244

[Expand]

Link table

Variable name Description Default

FREECAD_LIBPACK_USE Switch the usage of
the FreeCAD
LibPack on or off

On Win32
on,
otherwise
off

FREECAD_LIBPACK_DIR Directory where
the LibPack is

FreeCAD
SOURCE dir

FREECAD_BUILD_GUI Build FreeCAD with
all Gui related
modules

ON

FREECAD_BUILD_CAM Build the CAM
module,
experimental!

OFF

FREECAD_BUILD_INSTALLER Create the project
files for the
Windows installer.

OFF

FREECAD_BUILD_DOXYGEN_DOCU Create the project
files for source
code
documentation.

OFF

FREECAD_MAINTAINERS_BUILD Switch on stuff
needed only when
you do a Release
build.

OFF

If you are building with Qt Creator, jump to Building with Qt Creator, otherwise
proceed to Building with Visual Studio 9 2008.

Building FreeCAD
Depending on your current setup, the process for building FreeCAD will be
slightly different. This is due to the differences in available software and
software versions for each operating system.

The following procedure will work for compiling on Windows Vista/7/8, for XP
an alternate VS tool set is required for VS 2012 and 2013, which has not been
tested successfully with the current Libpacks. To target XP(both x32 and x64) it
is recommended to use VS2008 and Libpack FreeCADLibs_11.0_x86_VC9.7z

Building with Visual Studio 12 2013

Manual - FreeCAD Documentation

187 von 244

[Expand]

[Expand]

[Expand]

Building with Visual Studio 9 2008

Building with Qt Creator

Command line build

Building older versions

Using LibPack

To make it easier to get FreeCAD compiled, we provide a collection of all
needed libraries. It's called the LibPack (/wiki
/index.php?title=Third_Party_Libraries). You can find it on the download page
(http://sourceforge.net/project/showfiles.php?group_id=49159) on
sourceforge.

You need to set the following environment variables:

FREECADLIB = "D:\Wherever\LIBPACK"

QTDIR = "%FREECADLIB%"

Add "%FREECADLIB%\bin" and "%FREECADLIB%\dll" to the system PATH
variable. Keep in mind that you have to replace "%FREECADLIB%" with the path
name, since Windows does not recursively replace environment variables.
Directory setup in Visual Studio

Some search path of Visual Studio need to be set. To change them, use the
menu Tools→Options→Directory
Includes

Add the following search path to the include path search list:

 %FREECADLIB%\include
 %FREECADLIB%\include\Python
 %FREECADLIB%\include\boost
 %FREECADLIB%\include\xercesc
 %FREECADLIB%\include\OpenCascade
 %FREECADLIB%\include\OpenCV
 %FREECADLIB%\include\Coin
 %FREECADLIB%\include\SoQt
 %FREECADLIB%\include\QT
 %FREECADLIB%\include\QT\Qt3Support
 %FREECADLIB%\include\QT\QtCore
 %FREECADLIB%\include\QT\QtGui
 %FREECADLIB%\include\QT\QtNetwork
 %FREECADLIB%\include\QT\QtOpenGL
 %FREECADLIB%\include\QT\QtSvg
 %FREECADLIB%\include\QT\QtUiTools
 %FREECADLIB%\include\QT\QtXml
 %FREECADLIB%\include\Gts

Manual - FreeCAD Documentation

188 von 244

 %FREECADLIB%\include\zlib
Libs

Add the following search path to the lib path search list:

 %FREECADLIB%\lib
Executables

Add the following search path to the executable path search list:

 %FREECADLIB%\bin
TortoiseSVN binary installation directory, usually "C:\Programm
Files\TortoiseSVN\bin", this is needed for a distribution build when
SubWVRev.exe is used to extract the version number from Subversion.

Python needed

During the compilation some Python scripts get executed. So the Python
interpreter has to function on the OS. Use a command box to check it. If the
Python library is not properly installed you will get an error message like
Cannot find python.exe. If you use the LibPack you can also use the python.exe
in the bin directory.
Special for VC8

When building the project with VC8, you have to change the link information
for the WildMagic library, since you need a different version for VC6 and VC8.
Both versions are supplied in LIBPACK/dll. In the project properties for
AppMesh change the library name for the wm.dll to the VC8 version. Take care
to change it in Debug and Release configuration.

Compile

After you conform to all prerequisites the compilation is - hopefully - only a
mouse click in VC

After Compiling

To get FreeCAD up and running from the compiler environment you need to
copy a few files from the LibPack (/wiki/index.php?title=Third_Party_Libraries)
to the bin folder where FreeCAD.exe is installed after a successful build:

python.exe and python_d.exe from LIBPACK/bin
python25.dll and python25_d.dll from LIBPACK/bin
python25.zip from LIBPACK/bin
make a copy of Python25.zip and rename it to Python25_d.zip
QtCore4.dll from LIBPACK/bin
QtGui4.dll from LIBPACK/bin
boost_signals-vc80-mt-1_34_1.dll from LIBPACK/bin
boost_program_options-vc80-mt-1_34_1.dll from LIBPACK/bin
xerces-c_2_8.dll from LIBPACK/bin
zlib1.dll from LIBPACK/bin
coin2.dll from LIBPACK/bin
soqt1.dll from LIBPACK/bin
QtOpenGL4.dll from LIBPACK/bin
QtNetwork4.dll from LIBPACK/bin
QtSvg4.dll from LIBPACK/bin

Manual - FreeCAD Documentation

189 von 244

< previous: Tracker (/wiki/index.php?title=Tracker)
next: CompileOnUnix > (/wiki/index.php?title=CompileOnUnix)

QtXml4.dll from LIBPACK/bin
When using a LibPack (/wiki/index.php?title=Third_Party_Libraries) with a
Python version older than 2.5 you have to copy two further files:

zlib.pyd and zlib_d.pyd from LIBPACK/bin/lib. This is needed by python to
open the zipped python library.
_sre.pyd and _sre_d.pyd from LIBPACK/bin/lib. This is needed by python
for the built in help system.

If you don't get it running due to a Python error it is very likely that one of the
zlib*.pyd files is missing.

Alternatively, you can copy the whole bin folder of libpack into bin folder of
the build. This is easier, but takes time and disk space. This can be substited by
making links instead of copying files, see CompileOnWindows - Reducing Disk
Footprint (/wiki/index.php?title=CompileOnWindows_-
_Reducing_Disk_Footprint#avoiding_copying_any_libpack_files_to_launch_FreeCAD).

Additional stuff

If you whant to build the source code documentation you need DoxyGen
(http://www.stack.nl/~dimitri/doxygen/).

To create an intstaller package you need WIX (http://wix.sourceforge.net/).

During the compilation some Python scripts get executed. So the Python
interpreter has to work properly.

For more details have also a look to README.Linux in your sources.

First of all you should build the Qt plugin that provides all custom widgets of
FreeCAD we need for the Qt Designer. The sources are located under

//src/Tools/plugins/widget//.

So far we don't provide a makefile -- but calling

qmake plugin.pro

creates it. Once that's done, calling make will create the library

//libFreeCAD_widgets.so//.

To make this library known to your Qt Designer you have to copy the file to

//$QTDIR/plugin/designer//.

References

Index (/wiki

/index.php?title=Online_Help_Toc)

On recent linux distributions, FreeCAD is generally easy to build, since all
dependencies are usually provided by the package manager. It basically
involves 3 steps:

Getting the FreeCAD source code�.

Manual - FreeCAD Documentation

190 von 244

[Expand]

[Expand]

[Expand]

[Expand]

[Expand]

Getting the dependencies (packages FreeCAD depends upon)�.
Configure with "cmake" and Compile with "make"�.

Below, you'll find detailed explanations of the whole process and
particularities you might encounter. If you find anything wrong or out-of-date
in the text below (Linux distributions change often), or if you use a distribution
which is not listed, please help us correcting it.

Getting the source
Before you can compile FreeCAD, you need the source code. There are 3 ways
to get it:

Git

The quickest and best way to get the code is to clone the read-only git
repository now hosted on GitHub (you need the git (http://git-scm.com/)
package installed):

git clone https://github.com/FreeCAD/FreeCAD.git free-cad-code

This will place a copy of the latest version of the FreeCAD source code in a new
directory called "free-cad-code".

Github

The official FreeCAD repository is on Github: github.com/FreeCAD/FreeCAD
(https://github.com/FreeCAD/FreeCAD)

Source package

Alternatively you can download a source package, but they could be already
quite old so it's always better to get the latest sources via git or github.

Official FreeCAD source packages (distribution-independent): FreeCAD-
0.17_pre.zip (https://github.com/FreeCAD/FreeCAD/archive/0.17_pre.zip).

Getting the dependencies
To compile FreeCAD under Linux you have to install all libraries mentioned in
Third Party Libraries (/wiki/index.php?title=Third_Party_Libraries) first. Please
note that the names and availability of the libraries will depend on your
distribution. Note that if you don't use the most recent version of your
distribution, some of the packages below might be missing from your
repositories. In that case, look in the Older and non-conventional distributions
section below.

Skip to Compile FreeCAD

Debian and Ubuntu

Fedora

Gentoo

OpenSUSE

Arch Linux

Manual - FreeCAD Documentation

191 von 244

[Expand]Older and non-conventional distributions

Pivy

Pivy is not needed to build FreeCAD or to run it, but it is needed for the 2D
Drafting module to work. If you are not going to use that module, you won't
need pivy. By November 2015 the obsolete version of Pivy included with
FreeCAD source code will no longer compile on many systems, due to its age. If
you cannot find Pivy in your distribution's packages repository ort elsewhere,
you can compile pivy yourself:

Pivy compilation instructions (/wiki
/index.php?title=Extra_python_modules#Pivy)

Compile FreeCAD

Using cMake

cMake is a newer build system which has the big advantage of being common
for different target systems (Linux, Windows, MacOSX, etc). FreeCAD is now
using the cMake system as its main building system. Compiling with cMake is
usually very simple and happens in 2 steps. In the first step, cMake checks that
every needed programs and libraries are present on your system and sets up
all that's necessary for the subsequent compilation. You are given a few
alternatives detailed below, but FreeCAD comes with sensible defaults. The
second step is the compiling itself, which produces the FreeCAD executable.
Changing any options for cmake away from their default values, is much easier
with cmake-gui or other graphical cmake applications than with cmake on the
command line, as the graphical applications will give you interactive feed back.

Since FreeCAD is a heavy application, compiling can take a bit of time (about 10
minutes on a fast machine, 30 minutes (or more) on a slow one)
In-source building

If you are unsure then, due to its limitations, do not make an in-source build,
create an out-of-source build as explained in the next section. However
FreeCAD can be built in-source, which means that all the files resulting from
the compilation stay in the same folder as the source code. This is fine if you
are just looking at FreeCAD, and want to be able to remove it easily by just
deleting that folder. But in case you are planning to compile it often, you are
advised to make an out-of-source build, which offers many more advantages.
The following commands will compile FreeCAD:

$ cd freecad (the folder where you cloned the freecad source)

If you want to use your system's copy of Pivy, which you most commonly will,
then if not on Linux, set the compiler flag to use the correct pivy (via
FREECAD_USE_EXTERNAL_PIVY=1). Using external Pivy became the default for
Linux, during development of FreeCAD 0.16, so it does not need to be manually
set when compiling this version onwards, on Linux. Also, set the build type to
Debug if you want a debug build or Release if not. A Release build will run
much faster than a Debug build. Sketcher becomes very slow with complex
sketches if your FreeCAD is a Debug build. (NOTE: the space and "." after the
cmake flags are CRITICAL!):

For a Debug build

$ cmake -DFREECAD_USE_EXTERNAL_PIVY=1 -DCMAKE_BUILD_TYPE=Debug .

$ make

Or for a Release build

Manual - FreeCAD Documentation

192 von 244

$ cmake -DFREECAD_USE_EXTERNAL_PIVY=1 -DCMAKE_BUILD_TYPE=Release .

$ make

Your FreeCAD executable will then reside in the "bin" folder, and you can
launch it with:

$./bin/FreeCAD

How to repair your source code directory after accidentally running an in-source build.

This is a method, using Git, to repair your source code directory after
accidentally running an in-source build.

1) delete everything in your source base directory EXCEPT the hidden .git folder

2) In terminal 'git reset --hard HEAD'

//any remnants of an 'in source' build will be gone.

3) delete everything from your 'out of source' build directory and start over again with cmake

Out-of-source build

If you intend to follow the fast evolution of FreeCAD, building in a separate
folder is much more convenient. Every time you update the source code, cMake
will then intelligently distinguish which files have changed, and recompile only
what is needed. Out-of-source builds are specially handy when using the Git
system, because you can easily try other branches without confusing the build
system. To build out-of-source, simply create a build directory, distinct from
your FreeCAD source folder, and, from the build folder, point cMake (or if using
cmake-gui replace "cmake" in the code below with "cmake-gui") to the source
folder:

mkdir freecad-build

cd freecad-build

cmake ../freecad (or whatever the path is to your FreeCAD source folder)

make

The FreeCAD executable will then reside in the "bin" directory (within your
freecad-build directory).
Configuration options

There are a number of experimental or unfinished modules you may have to
build if you want to work on them. To do so, you need to set the proper options
for the configuration phase. Do it either on the command line, passing -D
<var>:<type>=<value> options to cMake or using one of the availables
gui-frontends (eg for Debian, packages cmake-qt-gui or cmake-curses-gui).
Changing any options for cmake away from their default values, is much easier
with cmake-gui or other graphical cmake applications than with cmake on the
command line, as they will give you interactive feed back.

As an example, to configure FreeCAD with the Assembly module built just tick
the box in a cmake gui application (e.g. cmake-gui) or on the command line
issue:

cmake -D FREECAD_BUILD_ASSEMBLY:BOOL=ON ''path-to-freecad-root''

Possible options are listed in FreeCAD's root CmakeLists.txt file.
Qt designer plugin

If you want to develop Qt stuff for FreeCAD, you'll need the Qt Designer plugin
that provides all custom widgets of FreeCAD. Go to

freecad/src/Tools/plugins/widget

So far we don't provide a makefile -- but calling

Manual - FreeCAD Documentation

193 von 244

qmake plugin.pro

creates it. Once that's done, calling

make

will create the library libFreeCAD_widgets.so. To make this library known to Qt
Designer you have to copy the file to $QTDIR/plugin/designer
Doxygen

If you feel bold enough to dive in the code, you could take advantage to build
and consult Doxygen generated FreeCAD's Source documentation (/wiki
/index.php?title=Source_documentation)

Making a debian package

If you plan to build a Debian package out of the sources you need to install
those packages first:

dh-make

devscripts

#optional, used for checking if packages are standard-compliant

lintian

To build a package open a console, simply go to the FreeCAD directory and call

debuild

Once the package is built, you can use lintian to check if the package contains
errors

#replace by the name of the package you just created

lintian your-fresh-new-freecad-package.deb

Troubleshooting

Note for 64bit systems

When building FreeCAD for 64-bit there is a known issue with the
OpenCASCADE 64-bit package. To get FreeCAD running properly you might need
to run the ./configure script with the additional define _OCC64 set:

./configure CXXFLAGS="-D_OCC64"

For Debian based systems this workaround is not needed when using the
prebuilt package because there the OpenCASCADE package is built to set
internally this define. Now you just need to compile FreeCAD the same way as
described above.

Automatic build scripts
Here is all what you need for a complete build of FreeCAD. It's a one-script-
approach and works on a fresh installed distro. The commands will ask for root
password (for installation of packages) and sometime to acknowledge a
fingerprint for an external repository server or https-subversion repository.
These scripts should run on 32 and 64 bit versions. They are written for
different versions, but are also likely to run on a later version with or without
major changes.

If you have such a script for your preferred distro, please send it! We will

Manual - FreeCAD Documentation

194 von 244

[Expand]

[Expand]

[Expand]

[Expand]

< previous: CompileOnWindows (/wiki
/index.php?title=CompileOnWindows)

next: CompileOnMac > (/wiki/index.php?title=CompileOnMac)

incorporate it into this article.

Ubuntu

OpenSUSE 12.2

Debian Squeeze

Fedora 22/23/24

Updating the source code
FreeCAD development happens fast, everyday or so there are bug fixes or new
features. The cmake systems allows you to intelligently update the source
code, and only recompile what has changed, making subsequent compilations
very fast. Updating the source code with git or subversion is very easy:

#Replace with the location where you cloned the source code the first time

cd freecad

#If you are using git

git pull

Move into the appropriate build directory and run cmake again (as cmake
updates the version number data for the Help menu, ...about FreeCAD),
however you do not need to add the path to source code after "cmake", just a
space and a dot:

#Replace with the location of the build directory

cd ../freecad-build

cmake .

make

Index
(/wiki/index.php?title=Online_Help_Toc)

<translate> This page explains how to compile the latest FreeCAD source code
on Mac OS X.

See also Compiling - Speeding up (/wiki
/index.php?title=Compiling_(Speeding_up)) How to speed up compilation.

Prerequisites
First of all, you will need to install the following software.

Xcode Development Tools

Unless you want to use the Xcode IDE for FreeCAD development, you will only
need to install the Command Line Tools. To do this on 10.9 and later, open
Terminal, run the following command, and then click Install in the dialog that
comes up. </translate>

xcode-select --install

<translate> For other versions of OS X, you can get the package from the Apple
developer downloads page (https://developer.apple.com/downloads
/index.action?q=xcode) (sign in with the same Apple ID you use for other Apple
services). Specifically, you will need to download Development Tools 3.2 for OS

Manual - FreeCAD Documentation

195 von 244

X 10.6, and Command Line Tools 4.8 for OS X 10.8.

Package Manager

You will want to use a package manager to install prerequisite software, this
page gives instructions for two of the common package managers in use for OS
X: Homebrew (http://brew.sh/) and MacPorts (https://www.macports.org/). It's
easiest to pick one package manager for your system, and not have multiple
package managers installed concurrently. Currently (October 2015), Homebrew
has more up-to-date libraries relating to FreeCAD than MacPorts.
Homebrew

To install Homebrew, enter the following in Terminal: </translate>

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

<translate>
MacPorts

To install MacPorts, follow the instructions from their website
(https://www.macports.org/install.php)

CMake

FreeCAD uses CMake (http://www.cmake.org/) to build the source. CMake
comes in two versions, command-line and GUI. Choose the one you prefer.
Homebrew

Command-line version:

brew install cmake

GUI:

Install directly from http://www.cmake.org/download (http://www.cmake.org
/download).
MacPorts

Command-line:

sudo port install cmake

GUI:

sudo port install cmake +gui

Installing the Dependencies
All of the needed libraries can be installed using either Homebrew or
MacPorts.

Homebrew Dependencies

</translate>

brew tap homebrew/science

brew tap sanelson/freecad

brew install boost eigen freetype oce python qt pyside pyside-tools xerces-c boost-python

brew install --without-framework --without-soqt sanelson/freecad/coin

brew install --HEAD pivy

brew install --with-oce nglib

<translate>

Manual - FreeCAD Documentation

196 von 244

MacPorts Dependencies

</translate>

sudo port install qt4-mac boost eigen3 freetype oce py27-pyside-tools xercesc Coin vtk hdf5

<translate>

Getting the source
In this guide, the source and build folders are created in /Users/username
/FreeCAD, but you can of course use whatever folder you want. </translate>

mkdir ~/FreeCAD

cd ~/FreeCAD

<translate> To get the FreeCAD source code, run: </translate>

git clone https://github.com/FreeCAD/FreeCAD FreeCAD-git

<translate>

Building FreeCAD
First, create a new folder for the build: </translate>

mkdir ~/FreeCAD/build

<translate> Now you will need to run CMake to generate the build files. Several
options will need to be given to CMake, which can be accomplished either with
the CMake GUI application, or via the command line.

CMake Options

Manual - FreeCAD Documentation

197 von 244

Name Value Notes

BUILD_ROBOT 0
(unchecked)

The robot module depends on
Orocos KDL, and the version of
KDL included with FreeCAD
currently (October 2015)
doesn't build on recent MacOS.
To build the robot module,
install Orocos KDL (no
MacPorts package is currently
available), and specify
FREECAD_USE_EXTERNAL_KDL=1
instead.

CMAKE_BUILD_TYPE Release

FREECAD_USE_EXTERNAL_PIVY 1 (checked) Homebrew only

FREETYPE_INCLUDE_DIR_freetype2 /usr/local
/include
/freetype2
for
Homebrew,
/opt/local
/include
/freetype2
for
MacPorts

Only CMake version older than
3.1.0

BUILD_FEM_NETGEN 1 (checked) Homebrew only

QT_QMAKE_EXECUTABLE /opt/local
/libexec
/qt4/bin
/qmake

MacPorts only (and probably
temporary)

FREECAD_CREATE_MAC_APP 1 (checked) If you want to make a
FreeCAD.app Then when you
run "make install" it will create
the FreeCAD.app where ever
CMAKE_INSTALL_PREFIX is set
to.

CMake GUI

Open the CMake app, and fill in the source and build folder fields. In this case,
it would be /Users/username/FreeCAD/FreeCAD-git for the source, and /Users

Manual - FreeCAD Documentation

198 von 244

/username/FreeCAD/build for the build folder.

Next, click the Configure button to populate the list of configuration options.
This will display a dialog asking you to specify what generator to use. Leave it
at the default Unix Makefiles. Configuring will fail the first time because there
are some options that need to be changed. Note: You will need to check the
Advanced checkbox to get all of the options.

Set options from the table above, then click Configure again and then
Generate.

CMake command line

Open a terminal, cd in to the build directory that was created above. Run
cmake with options from the table above, following the formula -D(Name)="
(Value)", and the path to your FreeCAD source directory as the final argument.
</translate>

$cd ~/FreeCAD/build

$cmake -DBUILD_ROBOT="0" ...options continue... -DFREECAD_CREATE_MAC_APP ="1" ../FreeCAD-

<translate>

Make

Finally, from a terminal run make to compile FreeCAD. </translate>

cd ~/FreeCAD/build

make –j3

<translate> The -j option specifies how many make processes to run at once.
One plus the number of CPU cores is usually a good number to use. However, if
compiling fails for some reason, it is useful to rerun make without the -j
option, so that you can see exactly where the error occurred.

If make finishes without any errors, you can now launch FreeCAD, either from
Terminal with ./bin/FreeCAD, or by double clicking the executable in Finder.

Updating
FreeCAD development happens fast; everyday or so there are bug fixes or new
features. To get these changes, run: </translate>

cd ~/FreeCAD/FreeCAD-git

git pull

<translate> And then repeat the compile step above.

Troubleshooting

Fortran

"No CMAKE_Fortran_COMPILER could be found." during configuration - Older
versions of FreeCAD will need a fortran compiler installed. With Homebrew, do
"brew install gcc" and try configuring again, for Macports, do "sudo port install
gcc49" and give cmake the path to Fortran ie -DCMAKE_Fortran_COMPILER=/opt
/local/bin/gfortran-mp-4.9 . Or, preferably use a more current version of
FreeCAD source!

OpenGL

See OpenGL on MacOS (/wiki/index.php?title=OpenGL_on_MacOS)

Manual - FreeCAD Documentation

199 von 244

< previous: CompileOnUnix (/wiki/index.php?title=CompileOnUnix)
next: Third Party Libraries > (/wiki
/index.php?title=Third_Party_Libraries)

Index (/wiki/index.php?title=Online_Help_Toc)
</translate>

<translate>

Overview

These are libraries which are not changed in the FreeCAD project. They are
basically used unchanged as a dynamic link library (*.so or *.dll). If there is a
change necessary or a wrapper class is needed, then the code of the wrapper
or the changed library code has to be moved to the FreeCAD base package. The
used libraries are:

If you are using Windows, consider using LibPack instead of downloading and
installing all the stuff on your own.

Links

Manual - FreeCAD Documentation

200 von 244

Link table

Lib name Version
needed

Link to get it

Python >= 2.5.x http://www.python.org/
(http://www.python.org/)

OpenCasCade >= 5.2 http://www.opencascade.org
(http://www.opencascade.org)

Qt >= 4.1.x http://www.qtsoftware.com
(http://www.qtsoftware.com)

Coin3D >= 2.x http://www.coin3d.org
(http://www.coin3d.org)

SoQt >= 1.2 http://www.coin3d.org
(http://www.coin3d.org)

Xerces-C++ >= 2.7.x
< 3.0

http://xml.apache.org/xerces-c/
(http://xml.apache.org/xerces-c/)

Zlib >= 1.x.x http://www.zlib.net/
(http://www.zlib.net/)

Boost >= 1.33.x http://www.boost.org/
(http://www.boost.org/)

Eigen3 >= 3.0.1 http://eigen.tuxfamily.org
/index.php?title=Main_Page
(http://eigen.tuxfamily.org
/index.php?title=Main_Page)

Shiboken >= 1.1.2 http://shiboken.readthedocs.org
/en/latest/
(http://shiboken.readthedocs.org
/en/latest/)

libarea N/A https://github.com/danielfalck/libarea
(https://github.com/danielfalck/libarea)

Details

Python

Version: 2.5 or higher

License: Python 2.5 license

You can use the source or binary from http://www.python.org/
(http://www.python.org/) or use alternetivly ActiveState Python from
http://www.activestate.com/ (http://www.activestate.com/) though it is a little

Manual - FreeCAD Documentation

201 von 244

bit hard to get the debug libs from ActiveState.
Description

Python is the primary scripting language and is used throughout the
application. For example:

Implement test scripts for testing on:
memory leaks
ensure presents of functionality after changes
post build checks
test coverage tests

Macros and macro recording
Implement application logic for standard packages
Implementation of whole workbenches
Dynamic loading of packages
Implementing rules for design (Knowledge engineering)
Doing some fancy Internet stuff like work groups and PDM
And so on ...

Especially the dynamic package loading of Python is used to load at run time
additional functionality and workbenches needed for the actual tasks. For a
closer look to Python see: www.python.org Why Python you may ask. There are
some reasons: So far I used different scripting languages in my professional
life:

Perl
Tcl/Tk
VB
Java

Python is more OO then Perl and Tcl, the code is not a mess like in Perl and VB.
Java isn't a script language in the first place and hard (or impossible) to
embed. Python is well documented and easy to embed and extend. It is also
well tested and has a strong back hold in the open source community.
Credits

Goes to Guido van Rossum and a lot of people made Python such a success!
OpenCasCade

Version: 5.2 or higher

License: OCTPL

OCC is a full-featured CAD Kernel. Originally, it's developed by Matra Datavision
in France for the Strim (Styler) and Euclid Quantum applications and later on
made Open Source. It's a really huge library and makes a free CAD application
possible in the first place, by providing some packages which would be hard or
impossible to implement in an Open Source project:

A complete STEP compliant geometry kernel
A topological data model and all needed functions to work on (cut, fuse,
extrude, and so on. . .)
Standard Import- / Export processors like STEP, IGES, VRML
3D and 2D viewer with selection support
A document and project data structure with support for save and restore,

Manual - FreeCAD Documentation

202 von 244

external linking of documents, recalculation of design history (parametric
modeling) and a facility to load new data types as an extension package
dynamically

To learn more about OpenCasCade take a look at the OpenCasCade page or
http://www.opencascade.org (http://www.opencascade.org).
Qt

Version: 4.1.x or higher

License: GPL v2.0/v3.0 or Commercial (from version 4.5 on also LPGL v2.1)

I don't think I need to tell a lot about Qt. It's one of the most often used GUI
toolkits in Open Source projects. For me the most important point to use Qt is
the Qt Designer and the possibility to load whole dialog boxes as a (XML)
resource and incorporate specialized widgets. In a CAX application the user
interaction and dialog boxes are by far the biggest part of the code and a good
dialog designer is very important to easily extend FreeCAD with new
functionality. Further information and a very good online documentation you'll
find on http://www.qtsoftware.com (http://www.qtsoftware.com).
Coin3D

Version: 2.0 or higher

License: GPL v2.0 or Commercial

Coin is a high-level 3D graphics library with a C++ Application Programming
Interface. Coin uses scenegraph data structures to render real-time graphics
suitable for mostly all kinds of scientific and engineering visualization
applications.

Coin is portable over a wide range of platforms: any UNIX / Linux / *BSD
platform, all Microsoft Windows operating system, and Mac OS X.

Coin is built on the industry-standard OpenGL immediate mode rendering
library, and adds abstractions for higher-level primitives, provides 3D
interactivity, immensely increases programmer convenience and productivity,
and contains many complex optimization features for fast rendering that are
transparent for the application programmer.

Coin is based on the SGI Open Inventor API. Open Inventor, for those who are
not familiar with it, has long since become the de facto standard graphics
library for 3D visualization and visual simulation software in the scientific and
engineering community. It has proved it's worth over a period of more than 10
years, its maturity contributing to its success as a major building block in
thousands of large-scale engineering applications around the world.

We will use OpenInventor as 3D viewer in FreeCAD because the OpenCasCade
viewer (AIS and Graphics3D) has serios limitations and performace bottlenecks,
especially when it goes in large-scale engineering rendering. Other things like
textures or volumetric rendering are not really supported, and so on

Since Version 2.0 Coin uses a different licence model. It's not longer LGPL. They
use GPL for open source and a commercial licence for closed source. That
means if you want to sell your work based on FreeCAD (extension modules) you
need to purchase a Coin licence!
SoQt

Version: 1.2.0 or higher

License: GPL v2.0 or Commercial

SoQt is the Inventor binding to the Qt Gui Toolkit. Unfortunately, it's not longer

Manual - FreeCAD Documentation

203 von 244

LGPL so we have to remove it from the code base of FreeCAD and link it as a
library. It has the same licence model like Coin. And you have to compile it with
your version of Qt.
Xerces-C++

Version: 2.7.0 or higher

License: Apache Software License Version 2.0

Xerces-C++ is a validating XML parser written in a portable subset of C++.
Xerces-C++ makes it easy to give your application the ability to read and write
XML data. A shared library is provided for parsing, generating, manipulating,
and validating XML documents.

Xerces-C++ is faithful to the XML 1.0 recommendation and many associated
standards (see Features below).

The parser provides high performance, modularity, and scalability. Source
code, samples and API documentation are provided with the parser. For
portability, care has been taken to make minimal use of templates, no RTTI,
and minimal use of #ifdefs.

The parser is used for saving and restoring parameters in FreeCAD.
Zlib

Version: 1.x.x

License: zlib License

zlib is designed to be a free, general-purpose, legally unencumbered -- that is,
not covered by any patents -- lossless data-compression library for use on
virtually any computer hardware and operating system. The zlib data format is
itself portable across platforms. Unlike the LZW compression method used in
Unix compress(1) and in the GIF image format, the compression method
currently used in zlib essentially never expands the data. (LZW can double or
triple the file size in extreme cases.) zlib's memory footprint is also
independent of the input data and can be reduced, if necessary, at some cost
in compression.
Boost

Version: 1.33.x

License: Boost Software License - Version 1.0

The Boost C++ libraries are a collection of peer-reviewed, open source libraries
that extend the functionality of C++. The libraries are licensed under the Boost
Software License, designed to allow Boost to be used with both open and
closed source projects. Many of Boost's founders are on the C++ standard
committee and several Boost libraries have been accepted for incorporation
into the Technical Report 1 of C++0x.

The libraries are aimed at a wide range of C++ users and application domains.
They range from general-purpose libraries like SmartPtr, to OS Abstractions
like FileSystem, to libraries primarily aimed at other library developers and
advanced C++ users, like MPL.

In order to ensure efficiency and flexibility, Boost makes extensive use of
templates. Boost has been a source of extensive work and research into
generic programming and meta-programming in C++.

See: http://www.boost.org/ (http://www.boost.org/) for details.
libarea

Version: N/A

Manual - FreeCAD Documentation

204 von 244

< previous: CompileOnMac (/wiki/index.php?title=CompileOnMac)
next: Third Party Tools > (/wiki/index.php?title=Third_Party_Tools)

License: New BSD (BSD 3-Clause)

Area is a piece of software created by Dan Heeks for HeeksCNC. It is employed
as a library for generation of CAM related operations in the Path Workbench.

LibPack

LibPack is a convenient package with all the above libraries packed together. It
is currently available for the Windows platform on the Download (/wiki
/index.php?title=Download) page! If you're working under Linux you don't need
a LibPack, instead of you should make use of the package repositories of your
Linux distribution.
FreeCADLibs7.x Changelog

Using QT 4.5.x and Coin 3.1.x
Eigen template lib for Robot added
SMESH experimental

Index (/wiki/index.php?title=Online_Help_Toc)
</translate>

<translate>

Tool Page
For every serious software development you need tools. Here is a list of tools
we use to develop FreeCAD:

Platform independend tools

Qt-Toolkit

The Qt-toolkit is a state of the art, plattform independend user interface
design tool. It is contained in the LibPack (/wiki
/index.php?title=Third_Party_Libraries) of FreeCAD, but can also be
downloaded at Qt project (http://qt-project.org/downloads).
InkScape

Great vector drawing programm. Adhers to the SVG standard and is used to
draw Icons and Pictures. Get it at www.inkscape.org (http://www.inkscape.org).
Doxygen

A very good and stable tool to generate source documentation from the .h and
.cpp files.
The Gimp

Not much to say about the Gnu Image Manipulation Program. Besides it can
handle .xpm files which is a very convenient way to handle Icons in QT
Programms. XPM is basicly C-Code which can be compiled into a programme.

Get the GIMP here: www.gimp.org (http://www.gimp.org/)

Tools on Windows

Visual Studio 8 Express

Although VC8 is for C++ development not really a step forward since

Manual - FreeCAD Documentation

205 von 244

< previous: Third Party Libraries (/wiki
/index.php?title=Third_Party_Libraries)
next: Start up and Configuration > (/wiki
/index.php?title=Start_up_and_Configuration)

VisualStudio 6 (IMO a big step back), its a free development system on
Windows. For native Win32 applications you need to download the
PlatformSDK from M$.

So the Express edition is hard to find. But you might try this link
(http://msdn.microsoft.com/vstudio/express/visualc/default.aspx)
CamStudio

Is a Open Source tool to record Screencasts (Webcasts). Its a very good tool to
create tutorials by recording them. Its far not so boring as writing
documentation.

See camstudio.org (http://camstudio.org/) for details.

Tortoise SVN

This is a very great tool. It makes using Subversion (our version control system
on sf.net) a real pleasure. You can throught out the explorer integration, easily
manage Revisions, check on Diffs, resolve Confilcts, make branches, and so
on.... The commit dialog itself is a piece of art. It gives you an overview over
your changed files and allows you to put them in the commit or not. That
makes it easy to bundle the changes to logical units and give them an clear
commit message.

You find ToroiseSVN on tortoisesvn.tigris.org (http://tortoisesvn.tigris.org/).
StarUML

A full featured Open Source UML programm. It has a lot of features of the big
ones, including reverse engeniering C++ source code....

Download here: staruml.sourceforge.net (http://staruml.sourceforge.net/en/)

Tools on Linux

TODO

Index (/wiki/index.php?title=Online_Help_Toc)
</translate>

<translate> This page shows the different ways to start FreeCAD and the most
important configuration features.

Starting FreeCAD from the Command line
FreeCAD can be started normally, by double-clicking on its desktop icon or
selecting it from the start menu, but it can also be started directly from the
command line. This allows you to change soem of the default startup options.

Command line options

The command line options are subject of frequent changes, therefore it is a
good idea to check the current options by typing: </translate>

Manual - FreeCAD Documentation

206 von 244

FreeCAD --help

<translate> From the response you can read the possible parameters:
</translate>

Usage:

FreeCAD [options] File1 File2

Allowed options:

Generic options:

-v [--version] print version string

-h [--help] print help message

-c [--console] start in console mode

--response-file arg can be specified with '@name', too

Configuration:

-l [--write-log] arg write a log file to default location(Run FreeCAD --h to see default

--log-file arg Unlike to --write-log this allows to log to an arbitrary file

-u [--user-cfg] arg User config file to load/save user settings

-s [--system-cfg] arg System config file to load/save system settings

-t [--run-test] arg test level

-M [--module-path] arg additional module paths

-P [--python-path] arg additional python paths

EX: (Windows)

"C:\Program Files\FreeCAD 0.14\bin\FreeCAD.exe" -M "N:\FreeCAD\Mod\Draft" -M "N:\FreeCAD\Mod\Part"

<translate>

Response and config files

FreeCAD can read some of these options from a config file. This file must be in
the bin path and must be named FreeCAD.cfg. Be aware that options specified
in the command line override the config file!

Some operating system have very low limit of the command line length. The
common way to work around those limitations is using response files. A
response file is just a configuration file which uses the same syntax as the
command line. If the command line specifies a name of response file to use,
it's loaded and parsed in addition to the command line: </translate>

FreeCAD @ResponseFile.txt

<translate> or: </translate>

FreeCAD --response-file=ResponseFile.txt

<translate>

Hidden options

There are a couple of options not visible to the user. These options are e.g. the
X-Window parameters parsed by the Windows system:

-display display, sets the X display (default is $DISPLAY).
-geometry geometry, sets the client geometry of the first window that is
shown.
-fn or -font font, defines the application font. The font should be specified
using an X logical font description.
-bg or -background color, sets the default background color and an
application palette (light and dark shades are calculated).
-fg or -foreground color, sets the default foreground color.

Manual - FreeCAD Documentation

207 von 244

-btn or -button color, sets the default button color.
-name name, sets the application name.
-title title, sets the application title.
-visual TrueColor, forces the application to use a TrueColor visual on an
8-bit display.
-ncols count, limits the number of colors allocated in the color cube on an
8-bit display, if the application is using the QApplication::ManyColor color
specification. If count is 216 then a 6x6x6 color cube is used (i.e. 6 levels of
red, 6 of green, and 6 of blue); for other values, a cube approximately
proportional to a 2x3x1 cube is used.
-cmap, causes the application to install a private color map on an 8-bit
display.

Running FreeCAD without User Interface
FreeCAD normally starts in GUI mode, but you can also force it to start in
console mode by typing: </translate>

FreeCAD -c

<translate> from the command line. In console mode, no user interface will be
displayed, and you will be presented with a python interpreter prompt. From
that python prompt, you have the same functionality as the python interpreter
that runs inside the FreeCAD GUI, and normal access to all modules and
plugins of FreeCAD, excepted the FreeCADGui module. Be aware that modules
that depend on FreeCADGui might also be unavailable.

Running FreeCAD as a python module
FreeCAD can also be used to run as a python module inside other applications
that use python or from an external python shell. For that, the host python
application must know where your FreeCAD libs reside. The best way to obtain
that is to temporarily append FreeCAD's lib path to the sys.path variable. The
following code typed from any python shell will import FreeCAD and let you
run it the same way as in console mode:

</translate>

import sys

sys.path.append("path/to/FreeCAD/lib") # change this by your own FreeCAD lib path

import FreeCAD

<translate>

Once FreeCAD is loaded, it is up to you to make it interact with your host
application in any way you can imagine!

The Config set
On every Startup FreeCAD examines its surrounding and the command line
parameters. It builds up a configuration set which holds the essence of the
runtime information. This information is later used to determine the place
where to save user data or log files. It is also very important for post
postmortem analyzes. Therefore it is saved in the log file.

Manual - FreeCAD Documentation

208 von 244

User related information

User config entries

Config var name Synopsis Example M$ Example Posix
(Linux)

UserAppData Path where
FreeCAD
stores User
Related
application
data.

C:\Documents and
Settings\username
\Application
Data\FreeCAD

/home/username
/.FreeCAD

UserParameter File where
FreeCAD
stores User
Related
application
data.

C:\Documents and
Settings\username
\Application
Data\FreeCAD\user.cfg

/home/username
/.FreeCAD
/user.cfg

SystemParameter File where
FreeCAD
stores
Application
Related
data.

C:\Documents and
Settings\username
\Application
Data\FreeCAD
\system.cfg

/home/username
/.FreeCAD
/system.cfg

UserHomePath Home path
of the
current
user

C:\Documents and
Settings\username\My
Documents

/home/username

Command line arguments

User config entries

Config var name Synopsis Example

LoggingFile 1 if the logging is
switched on

1

LoggingFileName File name where
the log is placed

C:\Documents and
Settings\username
\Application
Data\FreeCAD
\FreeCAD.log

Manual - FreeCAD Documentation

209 von 244

RunMode This indicates how
the main loop will
work. "Script"
means that the
given script is
called and then
exit. "Cmd" runs
the command line
interpreter.
"Internal" runs an
internal script.
"Gui" enters the
Gui event loop.
"Module" loads a
given python
module.

"Cmd"

FileName Meaning depends
on the RunMode

ScriptFileName Meaning depends
on the RunMode

Verbose Verbosity level of
FreeCAD

"" or "strict"

OpenFileCount Holds the number
of files opened
through command
line arguments

"12"

AdditionalModulePaths Holds the
additional Module
paths given in the
cmd line

"extraModules/"

System related

User config entries

Config var name Synopsis Example M$ Example
Posix (Linux)

AppHomePath Path where
FreeCAD is
installed

c:/Progam
Files/FreeCAD_0.7

/user/local
/FreeCAD_0.7

Manual - FreeCAD Documentation

210 von 244

PythonSearchPath Holds a list
of paths
which
python
search
modules.
This is at
startup can
change
during
execution

Some libraries need to call system environment variables. Sometimes when
there is a problem with a FreeCAD installation, it is because some environment
variable is absent or set wrongly. Therefore, some important variables get
duplicated in the Config and saved in the log file.

Python related environment variables: </translate>

PYTHONPATH
PYTHONHOME
TCL_LIBRARY
TCLLIBPATH

<translate> OpenCascade related environment variables: </translate>

CSF_MDTVFontDirectory
CSF_MDTVTexturesDirectory
CSF_UnitsDefinition
CSF_UnitsLexicon
CSF_StandardDefaults
CSF_PluginDefaults
CSF_LANGUAGE
CSF_SHMessage
CSF_XCAFDefaults
CSF_GraphicShr
CSF_IGESDefaults
CSF_STEPDefaults

<translate> System related environment variables: </translate>

PATH
<translate>

Build related information

The table below shows the availible informations about the Build version. Most
of it comes from the Subversion repository. This stuff is needed to exactly
rebuild a version!

Manual - FreeCAD Documentation

211 von 244

User config entries

Config var name Synopsis Example

BuildVersionMajor Major Version
number of the
Build. Defined
in src/Build
/Version.h.in

0

BuildVersionMinor Minor Version
number of the
Build. Defined
in src/Build
/Version.h.in

7

BuildRevision SVN Repository
Revision
number of the
src in the
Build.
Generated by
SVN

356

BuildRevisionRange Range of
differnt
changes

123-356

BuildRepositoryURL Repository URL https://free-
cad.svn.sourceforge.net
/svnroot/free-
cad/trunk/src (https://free-
cad.svn.sourceforge.net
/svnroot/free-
cad/trunk/src)

BuildRevisionDate Date of the
above Revision

2007/02/03 22:21:18

BuildScrClean Indicates if the
source was
changed ager
checkout

Src modified

BuildScrMixed Src not mixed

Manual - FreeCAD Documentation

212 von 244

< previous: Third Party Tools (/wiki
/index.php?title=Third_Party_Tools)
next: FreeCAD Build Tool > (/wiki
/index.php?title=FreeCAD_Build_Tool)

Branding related

These Config entries are related to the branding mechanism of FreeCAD. See
Branding (/wiki/index.php?title=Branding) for more details.

User config entries

Config var name Synopsis Example

ExeName Name of the build
Executable file. Can diver
from FreeCAD if a
different main.cpp is
used.

FreeCAD.exe

ExeVersion Over all Version shows
up at start time

V0.7

AppIcon Icon which is used for
the Executable, shows in
Application MainWindow.

"FCIcon"

ConsoleBanner Banner which is
prompted in console
mode

SplashPicture Name of the Icon used
for the Splash Screen

"FreeCADSplasher"

SplashAlignment Alignment of the Text in
the Splash dialog

Left"

SplashTextColor Color of the splasher
Text

"#000000"

StartWorkbench Name of the Workbech
which get started
automaticly after Startup

"Part design"

HiddenDockWindow List of dockwindows
(separated by a
semicolon) which will be
disabled

"Property editor"

Index (/wiki/index.php?title=Online_Help_Toc)

Manual - FreeCAD Documentation

213 von 244

</translate>

<translate> The FreeCAD build tool or fcbt is a python script located at
</translate>

 trunc/src/Tools/fcbt.py

<translate> It can be used to simplify some frequent tasks in building,
distributing and extending FreeCAD.

Usage
With Python (http://en.wikipedia.org/wiki/Python_(programming_language))
correctly installed, fcbt can be invoked by the command </translate>

 python fbct.py

<translate> It displays a menu, where you can select the task you want to use it
for: </translate>

FreeCAD Build Tool

Usage:

 fcbt <command name> [command parameter]

 possible commands are:

- DistSrc (DS) Build a source Distr. of the current source tree

- DistBin (DB) Build a binary Distr. of the current source tree

- DistSetup (DI) Build a Setup Distr. of the current source tree

- DistSetup (DUI) Build a User Setup Distr. of the current source tree

- DistAll (DA) Run all three above modules

- NextBuildNumber (NBN) Increase the Build Number of this Version

- CreateModule (CM) Insert a new FreeCAD Module in the module directory

For help on the modules type:

 fcbt <command name> ?

<translate> At the input promt enter the abbreviated command you want to
call. For example type "CM" for creating a module (/wiki
/index.php?title=Module_Creation).

DistSrc

The command "DS" creates a source distribution of the current source tree.

DistBin

The command "DB" creates a binary distribution of the current source tree.

DistSetup

The command "DI" creates a setup distribution of the current source tree.

DistSetup

The command "DUI" creates a user setup distribution of the current source
tree.

DistAll

The command "DA" executes "DS", "DB" and "DI" in sequence.

NextBuildNumber

The "NBN" command increments the build number to create a new release
version of FreeCAD.

Manual - FreeCAD Documentation

214 von 244

< previous: Start up and Configuration (/wiki
/index.php?title=Start_up_and_Configuration)

next: Module Creation > (/wiki/index.php?title=Module_Creation)

CreateModule

The "CM" command creates a new application module (/wiki
/index.php?title=Module_Creation).

Index (/wiki/index.php?title=Online_Help_Toc)
</translate>

<translate> Adding new modules and workbenches in FreeCAD is very easy. We
call module any extension of FreeCAD, while a workbench is a special GUI
configuration that groups some toolbars and menus. Usually you create a new
module which contains its own workbench.

Modules can be programmed in C++ or in python, or in a mixture of both, but
the module init files must be in python. Setting up a new module with those
init files is easy, and can be done either manually or with the FreeCAD build
tool.

Using the FreeCAD Build tool
Creating a new application module in FreeCAD is rather simple. In the FreeCAD
development tree exists the FreeCAD Build Tool (/wiki
/index.php?title=FreeCAD_Build_Tool) (fcbt) that does the most important
things for you. It is a Python (http://en.wikipedia.org
/wiki/Python_(programming_language)) script located under </translate>

 trunk/src/Tools/fcbt.py

<translate> When your python interpreter is correctly installed you can execute
the script from a command line with </translate>

 python fcbt.py

<translate> It will display the following menu: </translate>

FreeCAD Build Tool

Usage:

 fcbt <command name> [command parameter]

 possible commands are:

- DistSrc (DS) Build a source Distr. of the current source tree

- DistBin (DB) Build a binary Distr. of the current source tree

- DistSetup (DI) Build a Setup Distr. of the current source tree

- DistSetup (DUI) Build a User Setup Distr. of the current source tree

- DistAll (DA) Run all three above modules

- NextBuildNumber (NBN) Increase the Build Number of this Version

- CreateModule (CM) Insert a new FreeCAD Module in the module directory

- CreatePyModule (CP) Insert a new FreeCAD Python Module in the module directory

For help on the modules type:

 fcbt <command name> ?

<translate> At the command prompt enter CM to start the creation of a
module: </translate>

Insert command: ''CM''

<translate> You are now asked to specify a name for your new module. Lets call
it TestMod for example: </translate>

Manual - FreeCAD Documentation

215 von 244

Please enter a name for your application: ''TestMod''

<translate> After pressing enter fcbt starts copying all necessary files for your
module in a new folder at </translate>

 trunk/src/Mod/TestMod/

<translate> Then all files are modified with your new module name. The only
thing you need to do now is to add the two new projects "appTestMod" and
"appTestModGui" to your workspace (on Windows) or to your makefile targets
(unix). Thats it!

Setting up a new module manually
You need two things to create a new module:

A new folder in the FreeCAD Mod folder (either in
InstalledPath/FreeCAD/Mod or in UserPath/.FreeCAD/Mod). You can name
it as you like.
Inside that folder, an InitGui.py file. That file will be executed
automatically on FreeCAD start (for ex, put a print("hello world") inside)

Additionally, you can also put an Init.py file. The difference is, the InitGui.py file
is loaded only when FreeCAD runs in GUI mode, the Init.py file is loaded always.
But if we are going to make a workbench, we'll put it in InitGui.py, because
workbenches are used only in GUI mode, of course.

Creating a new workbench
Inside the InitGui.py file, one of the first thing you will want to do is to define a
workbench. Here is a minimal code that you can use: </translate>

Manual - FreeCAD Documentation

216 von 244

class MyWorkbench (Workbench):

"My workbench object"

Icon = """

 /* XPM */

 static const char *test_icon[]={

 "16 16 2 1",

 "a c #000000",

". c None",

"................",

"................",

"..############..",

"..############..",

"..############..",

"......####......",

"......####......",

"......####......",

"......####......",

"......####......",

"......####......",

"......####......",

"......####......",

"......####......",

"................",

"................"};

"""

 MenuText = "My Workbench"

 ToolTip = "This is my extraordinary workbench"

 def GetClassName(self):

 return "Gui::PythonWorkbench"

 def Initialize(self):

 import myModule1, myModule2

 self.appendToolbar("My Tools", ["MyCommand1","MyCommand2"])

 self.appendMenu("My Tools", ["MyCommand1","MyCommand2"])

 Log ("Loading MyModule... done\n")

 def Activated(self):

 # do something here if needed...

 Msg ("MyWorkbench.Activated()\n")

 def Deactivated(self):

 # do something here if needed...

 Msg ("MyWorkbench.Deactivated()\n")

 FreeCADGui.addWorkbench(MyWorkbench)

<translate> The workbench must have all these attributes defined:

The Icon attribute is an XPM image (Most software such as GIMP can
convert an image into xpm format, which is a text file. You can then paste
the contents here)
MenuText is the workbench name as it appears in the workbenches list
Tooltip appears when you hover on it with the mouse
Initialize() is executed on FreeCAD load, and must create all menus and
toolbars that the workbench will use. If you are going to make your
module in C++, you can also define your menus and toolbars inside the C++
module, not in this InitGui.py file. The important is that they are created
now, and not when the module is activated.
Activated() is executed when the user switches to your workbench
Deactivated() is executed when the user switches from yours to another
workbench or leaves FreeCAD

Creating FreeCAD commands in Python

Manual - FreeCAD Documentation

217 von 244

Usually you define all your tools (called Commands in FreeCAD) in another
module, then import that module before creating the toolbars and menus. This
is a minimal code that you can use to define a command: </translate>

import FreeCAD,FreeCADGui

class MyTool:

"My tool object"

def GetResources(self):

return {"MenuText": "My Command",

"Accel": "Ctrl+M",

"ToolTip": "My extraordinary command",

"Pixmap" : """

 /* XPM */

 static const char *test_icon[]={

 "16 16 2 1",

 "a c #000000",

". c None",

"................",

"................",

"..############..",

"..############..",

"..############..",

"......####......",

"......####......",

"......####......",

"......####......",

"......####......",

"......####......",

"......####......",

"......####......",

"......####......",

"................",

"................"};

"""}

 def IsActive(self):

 if FreeCAD.ActiveDocument == None:

 return False

 else:

 return True

 def Activated(self):

 # do something here...

 FreeCADGui.addCommand('MyCommand1',MyTool())

<translate>

The GetResources() method must return a dictionnary with visual
attributes of your tool. Accel defines a shortcut key but is not mandatory.
The IsActive() method defines if the command is active or greyed out in
menus and toolbars.
The Activated() method is executed when the Command is called through a
toolbar button or menu or even by script.

Creating FreeCAD Commands in C++
To Be Documented

Links
Some examples how power users have extended FreeCAD with various
custom external workbenches are collected in External workbenches
(/wiki/index.php?title=External_workbenches)

Manual - FreeCAD Documentation

218 von 244

< previous: FreeCAD Build Tool (/wiki
/index.php?title=FreeCAD_Build_Tool)

next: Debugging > (/wiki/index.php?title=Debugging)

Other example in Power user hub Workbench creation (/wiki
/index.php?title=Workbench_creation)

Index (/wiki
/index.php?title=Online_Help_Toc)

</translate>

<translate>

Test First
Before you go through the pain of debugging use the Test framework (/wiki
/index.php?title=Testing) to check if the standard tests work properly. If they
do not run complete there is possibly a broken installation.

Command Line
The debugging of FreeCAD is supported by a few internal mechanisms. The
command line version of FreeCAD provides some options for debugging
support.

These are the currently recognized options in FreeCAD 0.15:

Generic options:

-v [--version] Prints version string

-h [--help] Prints help message

-c [--console] Starts in console mode

--response-file arg Can be specified with '@name', too

Configuration:

-l [--write-log] Writes a log file to:

/home/graphos/.FreeCAD/FreeCAD.log

--log-file arg Unlike to --write-log this allows to log to an

 arbitrary file

-u [--user-cfg] arg User config file to load/save user settings

-s [--system-cfg] arg Systen config file to load/save system settings

-t [--run-test] arg Test level

-M [--module-path] arg Additional module paths

-P [--python-path] arg Additional python paths

Generating a Backtrace
If you are running a version of FreeCAD from the bleeding edge of the
development curve, it may "crash". You can help solve such problems by
providing the developers with a "backtrace". To do this, you need to be running
a "debug build" of the software. "Debug build" is a parameter that is set at
compile time, so you'll either need to compile FreeCAD yourself, or obtain a
pre-compiled "debug" version.

For Linux

Prerequisites:

software package gdb installed
a debug build of FreeCAD

Manual - FreeCAD Documentation

219 von 244

a FreeCAD model that causes a crash
Steps: Enter the following in your terminal window: </translate>

$ cd FreeCAD/bin

$ gdb FreeCAD

GNUdebugger will output some initializing information. The (gdb) shows
GNUDebugger is running in the terminal, now input:

(gdb) handle SIG33 noprint nostop

(gdb) run

<translate> FreeCAD will now start up. Perform the steps that cause FreeCAD to
crash or freeze, then enter in the terminal window:

(gdb) bt

This will generate a lengthy listing of exactly what the program was doing
when it crashed or froze. Include this with your problem report.

For MacOSX

Prerequisites:

software package lldb installed
a debug build of FreeCAD
a FreeCAD model that causes a crash

Steps: Enter the following in your terminal window:

$ cd FreeCAD/bin

$ lldb FreeCAD

LLDB will output some initializing information. The (lldb) shows the debugger
is running in the terminal, now input:

(lldb) run

FreeCAD will now start up. Perform the steps that cause FreeCAD to crash or
freeze, then enter in the terminal window:

(lldb) bt

This will generate a lengthy listing of exactly what the program was doing
when it crashed or froze. Include this with your problem report.

Python Debugging
Here is an example of using winpdb inside FreeCAD:

Run winpdb and set the password (e.g. test)�.
Create a Python file with this content�.

</translate>

Manual - FreeCAD Documentation

220 von 244

< previous: Module Creation (/wiki
/index.php?title=Module_Creation)

next: Testing > (/wiki/index.php?title=Testing)

import rpdb2

 rpdb2.start_embedded_debugger("test")

import FreeCAD

import Part

import Draft

print "hello"

print "hello"

import Draft

 points=[FreeCAD.Vector(-3.0,-1.0,0.0),FreeCAD.Vector(-2.0,0.0,0.0)]

Draft.makeWire(points,closed=False,face=False,support=None)

<translate>

Start FreeCAD and load the above file into FreeCAD�.
Press F6 to execute it�.
Now FreeCAD will become unresponsive because the Python
debugger is waiting

�.

Switch to the Windpdb GUI and click on "Attach". After a few
seconds an item "<Input>" appears where you have to
double-click

�.

Now the currently executed script appears in Winpdb.�.
Set a break at the last line and press F5�.
Now press F7 to step into the Python code of Draft.makeWire�.

Index (/wiki
/index.php?title=Online_Help_Toc)

</translate>

<translate> FreeCAD comes with an extensive testing framework. The testing
bases on a set of Python scripts which are located in the test module.

Introduction
This is the list of test apps as of 0.15 Git 4207:

TestAPP.All

Add test function

BaseTests

Add test function

UnitTests

Add test function

Document

Add test function

UnicodeTests

Manual - FreeCAD Documentation

221 von 244

< previous: Debugging (/wiki/index.php?title=Debugging)
next: Branding > (/wiki/index.php?title=Branding)

Add test function

MeshTestsApp

Add test function

TestSketcherApp

Add test function

TestPartApp

Add test function

TestPartDesignApp

Add test function

Workbench

Add test function

Menu

Add test function

Menu.MenuDeleteCases

Add test function

Menu.MenuCreateCases

Add test function

Index (/wiki

/index.php?title=Online_Help_Toc)
</translate>

<translate> This article describes the Branding of FreeCAD. Branding means to
start your own application on base of FreeCAD. That can be only your own
executable or splash screen (/wiki/index.php?title=Splash_screen) till a
complete reworked program. On base of the flexible architecture of FreeCAD
it's easy to use it as base for your own special purpose program.

General

Most of the branding is done in the MainCmd.cpp or MainGui.cpp. These
Projects generate the executable files of FreeCAD. To make your own Brand just
copy the Main or MainGui projects and give the executable an own name, e.g.
FooApp.exe. The most important settings for a new look can be made in one
place in the main() function. Here is the code section that controls the
branding:

</translate>

Manual - FreeCAD Documentation

222 von 244

int main(int argc, char ** argv)

{

// Name and Version of the Application

App::Application::Config()["ExeName"] = "FooApp";

App::Application::Config()["ExeVersion"] = "0.7";

// set the banner (for loging and console)

App::Application::Config()["CopyrightInfo"] = sBanner;

App::Application::Config()["AppIcon"] = "FooAppIcon";

App::Application::Config()["SplashScreen"] = "FooAppSplasher";

App::Application::Config()["StartWorkbench"] = "Part design";

App::Application::Config()["HiddenDockWindow"] = "Property editor";

App::Application::Config()["SplashAlignment"] = "Bottom|Left";

App::Application::Config()["SplashTextColor"] = "#000000"; // black

// Inits the Application

App::Application::Config()["RunMode"] = "Gui";

App::Application::init(argc,argv);

Gui::BitmapFactory().addXPM("FooAppSplasher", (const char**) splash_screen);

Gui::Application::initApplication();

Gui::Application::runApplication();

App::Application::destruct();

return 0;

}

<translate> The first Config entry defines the program name. This is not the
executable name, which can be changed by renaming or by compiler settings,
but the name that is displayed in the task bar on windows or in the program
list on Unix systems.

The next lines define the Config entries of your FooApp Application. A
description of the Config and its entries you find in Start up and Configuration
(/wiki/index.php?title=Start_up_and_Configuration).

Images

Image resources are compiled into FreeCAD using Qt's resource system
(http://qt-project.org/doc/qt-4.8/resources.html). Therefore you have to write
a .qrc file, an XML-based file format that lists image files on the disk but also
any other kind of resource files. To load the compiled resources inside the
application you have to add a line </translate>

 Q_INIT_RESOURCE(FooApp);

<translate> into the main() function. Alternatively, if you have an image in XPM
format you can directly include it into your main.cpp and add the following
line to register it: </translate>

Gui::BitmapFactory().addXPM("FooAppSplasher", (const char**) splash_screen);

<translate>

Branding XML

In FreeCAD there is also a method supported without writing a customized
main() function. For this method you must write a file name called
branding.xml and put it into the installation directory of FreeCAD. Here is an
example with all supported tags: </translate>

Manual - FreeCAD Documentation

223 von 244

< previous: Testing (/wiki/index.php?title=Testing)
next: Localisation > (/wiki/index.php?title=Localisation)

<?xml version="1.0" encoding="utf-8"?>

<Branding>

<Application>FooApp</Application>

<WindowTitle>Foo App in title bar</WindowTitle>

<BuildVersionMajor>1</BuildVersionMajor>

<BuildVersionMinor>0</BuildVersionMinor>

<BuildRevision>1234</BuildRevision>

<BuildRevisionDate>2014/1/1</BuildRevisionDate>

<CopyrightInfo>(c) My copyright</CopyrightInfo>

<MaintainerUrl>Foo App URL</MaintainerUrl>

<ProgramLogo>Path to logo (appears in bottom right corner)</ProgramLogo>

<WindowIcon>Path to icon file</WindowIcon>

<ProgramIcons>Path to program icons</ProgramIcons>

<SplashScreen>splashscreen.png</SplashScreen>

<SplashAlignment>Bottom|Left</SplashAlignment>

<SplashTextColor>#ffffff</SplashTextColor>

<SplashInfoColor>#c8c8c8</SplashInfoColor>

<StartWorkbench>PartDesignWorkbench</StartWorkbench>

</Branding>

<translate> All of the listed tags are optional.

Index (/wiki

/index.php?title=Online_Help_Toc)
</translate>

<translate> Localisation is in general the process of providing a Software with
a multiple language user interface. In FreeCAD you can set the language of the
user interface under Edit→Preferences→Application. FreeCAD uses Qt
(http://en.wikipedia.org/wiki/Qt_(toolkit)) to enable multiple language
support. On Unix/Linux systems, FreeCAD uses the current locale settings of
your system by default.

Helping to translate FreeCAD
One of the very important things you can do for FreeCAD if you are not a
programmer, is to help to translate the program in your language. To do so is
now easier than ever, with the use of the Crowdin (http://crowdin.net)
collaborative on-line translation system.

How to Translate

Go to the FreeCAD translation project page on Crowdin (http://crowdin.net
/project/freecad);
Login by creating a new profile, or using a third-party account like your
GMail address;
Click on the language you wish to work on;
Start translating by clicking on the Translate button next to one of the
files. For example, FreeCAD.ts contains the text strings for the FreeCAD
main GUI.
You can vote for existing translations, or you can create your own.

Note: If you are actively taking part in translating FreeCAD and want to be

informed before next release is ready to be launched,

so there is time to review your translation, please subscribe

to this issue: http://www.freecadweb.org/tracker/view.php?id=137 (http://www.freecadweb.org/tracker/view.

Manual - FreeCAD Documentation

224 von 244

[Expand]

Translating with Qt-Linguist (old way)

The following information doesn't need to be used
anymore and will likely become obsolete.
It is being kept here so that programmers may familiarize themselves with
how it works.

Preparing your own modules/applications for translation

Prerequisites

To localise your application module your need to helpers that come with Qt.
You can download them from the Trolltech-Website (http://www.trolltech.com
/products/qt/downloads), but they are also contained in the LibPack (/wiki
/index.php?title=Third_Party_Libraries):

qmake
Generates project files
lupdate
Extracts or updates the original texts in your project by scanning the
source code
Qt-Linguist
The Qt-Linguist is very easy to use and helps you translating with
nice features like a phrase book for common sentences.

Project Setup

To start the localisation of your project go to the GUI-Part of you module and
type on the command line: </translate>

qmake -project

<translate> This scans your project directory for files containing text strings
and creates a project file like the following example: </translate>

##

Automatically generated by qmake (1.06c) Do 2. Nov 14:44:21 2006

##

 TEMPLATE = app

 DEPENDPATH += .\Icons

 INCLUDEPATH += .

Input

 HEADERS += ViewProvider.h Workbench.h

 SOURCES += AppMyModGui.cpp \

Command.cpp \

ViewProvider.cpp \

Workbench.cpp

 TRANSLATIONS += MyMod_de.ts

<translate>

You can manually add files here. The section TRANSLATIONS contains a list of
files with the translation for each language. In the above example MyMod_de.ts
is the german translation.

Now you need to run lupdate to extract all string literals in your GUI. Running

Manual - FreeCAD Documentation

225 von 244

lupdate after changes in the source code is allways safe since it never deletes
strings from your translations files. It only adds new strings.

Now you need to add the .ts-files to your VisualStudio project. Specifiy the
following custom build method for them: </translate>

python ..\..\..\Tools\qembed.py "$(InputDir)\$(InputName).ts"

"$(InputDir)\$(InputName).h" "$(InputName)"

<translate> Note: Enter this in one command line, the line break is only for
layout purpose.

By compiling the .ts-file of the above example, a header file MyMod_de.h is
created. The best place to include this is in App<Modul>Gui.cpp. In our
example this would be AppMyModGui.cpp. There you add the line </translate>

new Gui::LanguageProducer("Deutsch", <Modul>_de_h_data, <Modul>_de_h_len);

<translate> to publish your translation in the application.

Setting up python files for translation

To ease localization for the py files you can use the tool "pylupdate4" which
accepts one or more py files. With the -ts option you can prepare/update one
or more .ts files. For instance to prepare a .ts file for French simply enter into
the command line: </translate>

pylupdate4 *.py -ts YourModule_fr.ts

<translate> the pylupdate tool will scan your .py files for translate() or tr()
functions and create a YourModule_fr.ts file. That file can the be translated
with QLinguist and a YourModule_fr.qm file produced from QLinguist or with
the command </translate>

lrelease YourModule_fr.ts

<translate> Beware that the pylupdate4 tool is not very good at recognizing
translate() functions, they need to be formatted very specifically (see the Draft
module files for examples). Inside your file, you can then setup a translator like
this (after loading your QApplication but BEFORE creating any qt widget):
</translate>

translator = QtCore.QTranslator()

translator.load("YourModule_"+languages[ln])

QtGui.QApplication.installTranslator(translator)

<translate> Optionally, you can also create the file XML Draft.qrc with this
content: </translate>

<RCC>

<qresource prefix="/translations" >

<file>Draft_fr.qm</file>

</qresource>

</RCC>

<translate> and running pyrcc4 Draft.qrc -o qrc_Draft.py creates a big Python
containing all resources. BTW this approach also works to put icon files in one
resource file

Translating the wiki
This wiki is hosting a lot of contents, the majority of which build up the

Manual - FreeCAD Documentation

226 von 244

manual. You can browse the documentation starting from the Main Page (/wiki
/index.php?title=Main_Page), or have a look at the User's manual Online Help
Toc (/wiki/index.php?title=Online_Help_Toc).

Translation plugin

When the Wiki moved away from SourceForge, Yorik (/wiki
/index.php?title=User:Yorik) installed a Translation plugin
(http://www.mediawiki.org/wiki/Help:Extension:Translate) which allows to
ease translations between pages. For example, the page title can now be
translated. Other advantages of the Translation plugin are that it keeps track of
translations, notifies if the original page has been updated, and maintains
translations in sync with the original English page.

The tool is documented in Extension:Translate (http://www.mediawiki.org
/wiki/Help:Extension:Translate), and is part of a Language Extension Bundle
(http://www.mediawiki.org/wiki/MediaWiki_Language_Extension_Bundle).

To quickly get started on preparing a page for translation and activating the
plugin, please read the Page translation example (http://www.mediawiki.org
/wiki/Help:Extension:Translate/Page_translation_example).

To see an example of how the Translation tool works once the translation
plugin is activated on a page, you can visit the Main Page (/wiki
/index.php?title=Main_Page). You will see a new language menu bar at the
bottom. It is automatically generated. Click for instance on the German link, it
will get you to Main Page/de (/wiki/index.php?title=Main_Page/de). Right
under the title, you can read "This page is a translated version of a page Main
Page and the translation is xx% complete." (xx being the actual percentage of
translation). Click on the "translated version" link to start translation, or to
update or correct the existing translation.

You will notice that you cannot directly edit a page anymore once it's been
marked as a translation. You have to go through the translation utility.

When adding new content, the English page should be created first, then
translated into another language. If someone wants to change/add content in
a page, he should do the English one first.

It is recommended to have basic knowledge of wiki style formatting and
general guidelines of the FreeCAD wiki, because you will have to deal with
some tags while translating. You can find this information on WikiPages (/wiki
/index.php?title=WikiPages).

The sidebar (navigation menu on the left) is also translatable. Please follow
dedicated instructions on Localisation Sidebar (/wiki
/index.php?title=Localisation_Sidebar) page.

REMARK: The first time you switch a page to the new translation system, it
looses all its old 'manual' translations. To recover the translation, you need to
open an earlier version from the history, and copy/paste manually the
paragraphs to the new translation system.

Remark: to be able to translate in the wiki, you must of course gain wiki edit
permission (/wiki
/index.php?title=FAQ#How_can_I_get_edit_permission_on_the_wiki.3F).

If you are unsure how to proceed, don't hesitate to ask for help in the forum
(http://forum.freecadweb.org).

Old translation instructions

Manual - FreeCAD Documentation

227 von 244

[Expand]

< previous: Branding (/wiki/index.php?title=Branding)
next: Extra python modules > (/wiki
/index.php?title=Extra_python_modules)

These instructions are for historical background only,
while the pages are being passed to the new translation plugin.

Index (/wiki

/index.php?title=Online_Help_Toc)
</translate>

<translate> This page lists several additional python modules or other pieces
of software that can be downloaded freely from the internet, and add
functionality to your FreeCAD installation.

PySide (previously PyQt4)
homepage (PySide): http://qt-project.org/wiki/PySide (http://qt-
project.org/wiki/PySide)
license: LGPL
optional, but needed by several modules: Draft, Arch, Ship, Plot,
OpenSCAD, Spreadsheet

PySide (previously PyQt) is required by several modules of FreeCAD to access
FreeCAD's Qt interface. It is already bundled in the windows verison of
FreeCAD, and is usually installed automatically by FreeCAD on Linux, when
installing from official repositories. If those modules (Draft, Arch, etc) are
enabled after FreeCAD is installed, it means PySide (previously PyQt) is already
there, and you don't need to do anything more.

Note: FreeCAD progressively moved away from PyQt after version 0.13, in favour
of PySide (http://qt-project.org/wiki/PySide), which does exactly the same job
but has a license (LGPL) more compatible with FreeCAD.

Installation

Linux

The simplest way to install PySide is through your distribution's package
manager. On Debian/Ubuntu systems, the package name is generally python-
PySide, while on RPM-based systems it is named pyside. The necessary
dependencies (Qt and SIP) will be taken care of automatically.
Windows

The program can be downloaded from http://qt-project.org
/wiki/Category:LanguageBindings::PySide::Downloads (http://qt-project.org
/wiki/Category:LanguageBindings::PySide::Downloads) . You'll need to install
the Qt and SIP libraries before installing PySide (to be documented).
MacOSX

PyQt on Mac can be installed via homebrew or port. See
CompileOnMac#Install_Dependencies (/wiki
/index.php?title=CompileOnMac#Install_Dependencies) for more information.

Usage

Once it is installed, you can check that everything is working by typing in
FreeCAD python console: </translate>

Manual - FreeCAD Documentation

228 von 244

import PySide

<translate> To access the FreeCAD interface, type : </translate>

from PySide import QtCore,QtGui

FreeCADWindow = FreeCADGui.getMainWindow()

<translate> Now you can start to explore the interface with the dir() command.
You can add new elements, like a custom widget, with commands like :
</translate>

FreeCADWindow.addDockWidget(QtCore.Qt.RghtDockWidgetArea,my_custom_widget)

<translate> Working with Unicode : </translate>

text = text.encode('utf-8')

<translate> Working with QFileDialog and OpenFileName : </translate>

path = FreeCAD.ConfigGet("AppHomePath")

#path = FreeCAD.ConfigGet("UserAppData")

OpenName, Filter = PySide.QtGui.QFileDialog.getOpenFileName(None, "Read a txt file", path

<translate> Working with QFileDialog and SaveFileName : </translate>

path = FreeCAD.ConfigGet("AppHomePath")

#path = FreeCAD.ConfigGet("UserAppData")

SaveName, Filter = PySide.QtGui.QFileDialog.getSaveFileName(None, "Save a file txt", path

<translate>

Example of transition from PyQt4 and PySide

PS: these examples of errors were found in the transition PyQt4 to PySide and
these corrections were made, other solutions are certainly available with the
examples above </translate>

try:

import PyQt4 # PyQt4

from PyQt4 import QtGui ,QtCore # PyQt4

from PyQt4.QtGui import QComboBox # PyQt4

from PyQt4.QtGui import QMessageBox # PyQt4

from PyQt4.QtGui import QTableWidget, QApplication # PyQt4

from PyQt4.QtGui import * # PyQt4

from PyQt4.QtCore import * # PyQt4

except Exception:

import PySide # PySide

from PySide import QtGui ,QtCore # PySide

from PySide.QtGui import QComboBox # PySide

from PySide.QtGui import QMessageBox # PySide

from PySide.QtGui import QTableWidget, QApplication # PySide

from PySide.QtGui import * # PySide

from PySide.QtCore import * # PySide

<translate> To access the FreeCAD interface, type : You can add new elements,
like a custom widget, with commands like : </translate>

myNewFreeCADWidget = QtGui.QDockWidget() # create a new dockwidget

myNewFreeCADWidget.ui = Ui_MainWindow() # myWidget_Ui() # load the Ui script

myNewFreeCADWidget.ui.setupUi(myNewFreeCADWidget) # setup the ui

try:

 app = QtGui.qApp # PyQt4 # the active qt window, = the freecad window si

FCmw = app.activeWindow() # PyQt4 # the active qt window, = the freecad window si

FCmw.addDockWidget(QtCore.Qt.RightDockWidgetArea,myNewFreeCADWidget) # add the widget to the main win

except Exception:

FCmw = FreeCADGui.getMainWindow() # PySide # the active qt window, = the freecad window s

FCmw.addDockWidget(QtCore.Qt.RightDockWidgetArea,myNewFreeCADWidget) # add the widget to the main win

<translate> Working with Unicode : </translate>

Manual - FreeCAD Documentation

229 von 244

try:

 text = unicode(text, 'ISO-8859-1').encode('UTF-8') # PyQt4

except Exception:

 text = text.encode('utf-8') # PySide

<translate> Working with QFileDialog and OpenFileName : </translate>

OpenName = ""

try:

OpenName = QFileDialog.getOpenFileName(None,QString.fromLocal8Bit("Lire un fichier FCInfo ou txt"

except Exception:

OpenName, Filter = PySide.QtGui.QFileDialog.getOpenFileName(None, "Lire un fichier FCInfo ou txt"

<translate> Working with QFileDialog and SaveFileName : </translate>

SaveName = ""

try:

SaveName = QFileDialog.getSaveFileName(None,QString.fromLocal8Bit("Sauver un fichier FCInfo"

except Exception:

SaveName, Filter = PySide.QtGui.QFileDialog.getSaveFileName(None, "Sauver un fichier FCInfo"

<translate> The MessageBox: </translate>

def errorDialog(msg):

 diag = QtGui.QMessageBox(QtGui.QMessageBox.Critical,u"Error Message",msg)

try:

 diag.setWindowFlags(PyQt4.QtCore.Qt.WindowStaysOnTopHint) # PyQt4 # this function sets the window

except Exception:

 diag.setWindowFlags(PySide.QtCore.Qt.WindowStaysOnTopHint)# PySide # this function sets the windo

diag.setWindowModality(QtCore.Qt.ApplicationModal) # function has been disabled to promote "Wi

 diag.exec_()

<translate> Working with setProperty (PyQt4) and setValue (PySide)
</translate>

self.doubleSpinBox.setProperty("value", 10.0) # PyQt4

<translate> replace to : </translate>

self.doubleSpinBox.setValue(10.0) # PySide

<translate> Working with setToolTip </translate>

self.doubleSpinBox.setToolTip(_translate("MainWindow", "Coordinate placement Axis Y", None

<translate> replace to : </translate>

self.doubleSpinBox.setToolTip(_fromUtf8("Coordinate placement Axis Y")) # PySide

<translate> or : </translate>

self.doubleSpinBox.setToolTip(u"Coordinate placement Axis Y.")# PySide

<translate>

Additional documentation

Some pyQt4 tutorials (including how to build interfaces with Qt Designer to use
with python):

http://pyqt.sourceforge.net/Docs/PyQt4/classes.html
(http://pyqt.sourceforge.net/Docs/PyQt4/classes.html) - the PyQt4 API
Reference on sourceforge
http://www.rkblog.rk.edu.pl/w/p/introduction-pyqt4/
(http://www.rkblog.rk.edu.pl/w/p/introduction-pyqt4/) - a simple

Manual - FreeCAD Documentation

230 von 244

introduction
http://www.zetcode.com/tutorials/pyqt4/ (http://www.zetcode.com
/tutorials/pyqt4/) - very complete in-depth tutorial

Pivy
homepage: https://bitbucket.org/Coin3D/coin/wiki/Home
(https://bitbucket.org/Coin3D/coin/wiki/Home)
license: BSD
optional, but needed by several modules of FreeCAD: Draft, Arch

Pivy is a needed by several modules to access the 3D view of FreeCAD. On
windows, Pivy is already bundled inside the FreeCAD installer, and on Linux it
is usually automatically installed when you install FreeCAD from an official
repository. On MacOSX, unfortunately, you will need to compile pivy yourself.

Installation

Prerequisites

I believe before compiling Pivy you will want to have Coin and SoQt installed.

I found for building on Mac it was sufficient to install the Coin3 binary package
(http://www.coin3d.org/lib/plonesoftwarecenter_view). Attempting to install
coin from MacPorts was problematic: tried to add a lot of X Windows packages
and ultimately crashed with a script error.

For Fedora I found an RPM with Coin3.

SoQt compiled from source (http://www.coin3d.org/lib/soqt/releases/1.5.0)
fine on Mac and Linux.
Debian & Ubuntu

Starting with Debian Squeeze and Ubuntu Lucid, pivy will be available directly
from the official repositories, saving us a lot of hassle. In the meantime, you
can either download one of the packages we made (for debian and ubuntu
karmic) availables on the Download (/wiki/index.php?title=Download) pages,
or compile it yourself.

The best way to compile pivy easily is to grab the debian source package for
pivy and make a package with debuild. It is the same source code from the
official pivy site, but the debian people made several bug-fixing additions. It
also compiles fine on ubuntu karmic: http://packages.debian.org/squeeze
/python-pivy (http://packages.debian.org/squeeze/python-pivy) download the
.orig.gz and the .diff.gz file, then unzip both, then apply the .diff to the source:
go to the unzipped pivy source folder, and apply the .diff patch: </translate>

patch -p1 < ../pivy_0.5.0~svn765-2.diff

<translate> then </translate>

debuild

<translate> to have pivy properly built into an official installable package.
Then, just install the package with gdebi.
Other linux distributions

First get the latest sources from the project's repository (http://pivy.coin3d.org
/mercurial/): </translate>

Manual - FreeCAD Documentation

231 von 244

hg clone http://hg.sim.no/Pivy/default Pivy

<translate> As of March 2012, the latest version is Pivy-0.5.

Then you need a tool called SWIG to generate the C++ code for the Python
bindings. Pivy-0.5 reports that it has only been tested with SWIG 1.3.31, 1.3.33,
1.3.35, and 1.3.40. So you can download a source tarball for one of these old
versions from http://www.swig.org (http://www.swig.org). Then unpack it and
from a command line do (as root): </translate>

./configure

make

make install (or checkinstall if you use it)

<translate> It takes just a few seconds to build.

Alternatively, you can try building with a more recent SWIG. As of March 2012, a
typical repository version is 2.0.4. Pivy has a minor compile problem with SWIG
2.0.4 on Mac OS (see below) but seems to build fine on Fedora Core 15.

After that go to the pivy sources and call </translate>

python setup.py build

<translate> which creates the source files. Note that build can produce
thousands of warnings, but hopefully there will be no errors.

This is probably obsolete, but you may run into a compiler error where a 'const
char*' cannot be converted in a 'char*'. To fix that you just need to write a
'const' before in the appropriate lines. There are six lines to fix.

After that, install by issuing (as root): </translate>

python setup.py install (or checkinstall python setup.py install)

<translate> That's it, pivy is installed.
Mac OS

These instructions may not be complete. Something close to this worked for
OS 10.7 as of March 2012. I use MacPorts for repositories, but other options
should also work.

As for linux, get the latest source: </translate>

hg clone http://hg.sim.no/Pivy/default Pivy

<translate> If you don't have hg, you can get it from MacPorts: </translate>

port install mercurial

<translate> Then, as above you need SWIG. It should be a matter of:
</translate>

port install swig

<translate> I found I needed also: </translate>

port install swig-python

<translate> As of March 2012, MacPorts SWIG is version 2.0.4. As noted above
for linux, you might be better off downloading an older version. SWIG 2.0.4
seems to have a bug that stops Pivy building. See first message in this digest:
https://sourceforge.net/mailarchive/message.php?msg_id=28114815
(https://sourceforge.net/mailarchive/message.php?msg_id=28114815)

Manual - FreeCAD Documentation

232 von 244

This can be corrected by editing the 2 source locations to add dereferences:
*arg4, *arg5 in place of arg4, arg5. Now Pivy should build: </translate>

python setup.py build

sudo python setup.py install

<translate>
Windows

Assuming you are using Visual Studio 2005 or later you should open a
command prompt with 'Visual Studio 2005 Command prompt' from the Tools
menu. If the Python interpreter is not yet in the system path do </translate>

set PATH=path_to_python_2.5;%PATH%

<translate> To get pivy working you should get the latest sources from the
project's repository: </translate>

svn co https://svn.coin3d.org/repos/Pivy/trunk Pivy

<translate> Then you need a tool called SWIG to generate the C++ code for the
Python bindings. It is recommended to use version 1.3.25 of SWIG, not the
latest version, because at the moment pivy will only function correctly with
1.3.25. Download the binaries for 1.3.25 from http://www.swig.org
(http://www.swig.org). Then unpack it and from the command line add it to the
system path </translate>

set PATH=path_to_swig_1.3.25;%PATH%

<translate> and set COINDIR to the appropriate path </translate>

set COINDIR=path_to_coin

<translate> On Windows the pivy config file expects SoWin instead of SoQt as
default. I didn't find an obvious way to build with SoQt, so I modified the file
setup.py directly. In line 200 just remove the part 'sowin' : ('gui._sowin', 'sowin-
config', 'pivy.gui.') (do not remove the closing parenthesis).

After that go to the pivy sources and call </translate>

python setup.py build

<translate> which creates the source files. You may run into a compiler error
several header files couldn't be found. In this case adjust the INCLUDE variable
</translate>

set INCLUDE=%INCLUDE%;path_to_coin_include_dir

<translate> and if the SoQt headers are not in the same place as the Coin
headers also </translate>

set INCLUDE=%INCLUDE%;path_to_soqt_include_dir

<translate> and finally the Qt headers </translate>

set INCLUDE=%INCLUDE%;path_to_qt4\include\Qt

<translate> If you are using the Express Edition of Visual Studio you may get a
python keyerror exception. In this case you have to modify a few things in
msvccompiler.py located in your python installation.

Go to line 122 and replace the line </translate>

Manual - FreeCAD Documentation

233 von 244

vsbase = r"Software\Microsoft\VisualStudio\%0.1f" % version

<translate> with </translate>

vsbase = r"Software\Microsoft\VCExpress\%0.1f" % version

<translate> Then retry again. If you get a second error like </translate>

error: Python was built with Visual Studio 2003;...

<translate> you must also replace line 128 </translate>

self.set_macro("FrameworkSDKDir", net, "sdkinstallrootv1.1")

<translate> with </translate>

self.set_macro("FrameworkSDKDir", net, "sdkinstallrootv2.0")

<translate> Retry once again. If you get again an error like </translate>

error: Python was built with Visual Studio version 8.0, and extensions need to be built with

<translate> then you should check the environment variables
DISTUTILS_USE_SDK and MSSDK with </translate>

echo %DISTUTILS_USE_SDK%

echo %MSSDK%

<translate> If not yet set then just set it e.g. to 1 </translate>

set DISTUTILS_USE_SDK=1

set MSSDK=1

<translate> Now, you may run into a compiler error where a 'const char*'
cannot be converted in a 'char*'. To fix that you just need to write a 'const'
before in the appropriate lines. There are six lines to fix. After that copy the
generated pivy directory to a place where the python interpreter in FreeCAD
can find it.

Usage

To check if Pivy is correctly installed: </translate>

import pivy

<translate> To have Pivy access the FreeCAD scenegraph do the following:
</translate>

from pivy import coin

App.newDocument() # Open a document and a view

view = Gui.ActiveDocument.ActiveView

FCSceneGraph = view.getSceneGraph() # returns a pivy Python object that holds a SoSeparator, the main "co

FCSceneGraph.addChild(coin.SoCube()) # add a box to scene

<translate> You can now explore the FCSceneGraph with the dir() command.

Additonal Documentation

Unfortunately documentation about pivy is still almost inexistant on the net.
But you might find Coin documentation useful, since pivy simply translate Coin
functions, nodes and methods in python, everything keeps the same name and
properties, keeping in mind the difference of syntax between C and python:

https://bitbucket.org/Coin3D/coin/wiki/Documentation
(https://bitbucket.org/Coin3D/coin/wiki/Documentation) - Coin3D API

Manual - FreeCAD Documentation

234 von 244

Reference
http://www-evasion.imag.fr/~Francois.Faure/doc/inventorMentor
/sgi_html/index.html (http://www-evasion.imag.fr/~Francois.Faure
/doc/inventorMentor/sgi_html/index.html) - The Inventor Mentor - The
"bible" of Inventor scene description language.

You can also look at the Draft.py file in the FreeCAD Mod/Draft folder, since it
makes big use of pivy.

pyCollada
homepage: http://pycollada.github.com (http://pycollada.github.com)
license: BSD
optional, needed to enable import and export of Collada (.DAE) files

pyCollada is a python library that allow programs to read and write Collada
(*.DAE) (http://en.wikipedia.org/wiki/COLLADA) files. When pyCollada is
installed on your system, FreeCAD will be able to handle importing and
exporting in the Collada file format.

Installation

Pycollada is usually not yet available in linux distributions repositories, but
since it is made only of python files, it doesn't require compilation, and is easy
to install. You have 2 ways, or directly from the official pycollada git repository,
or with the easy_install tool.
Linux

In either case, you'll need the following packages already installed on your
system: </translate>

python-lxml

python-numpy

python-dateutil

<translate>
From the git repository

</translate>

git clone git://github.com/pycollada/pycollada.git pycollada

cd pycollada

sudo python setup.py install

<translate>
With easy_install

Assuming you have a complete python installation already, the easy_install
utility should be present already: </translate>

easy_install pycollada

<translate> You can check if pycollada was correctly installed by issuing in a
python console: </translate>

import collada

<translate> If it returns nothing (no error message), then all is OK
Windows

On Windows since 0.15 pycollada is included in both the FreeCAD release and

Manual - FreeCAD Documentation

235 von 244

developer builds so no additional steps are necessary.
Mac OS

If you are using the Homebrew build of FreeCAD you can install pycollada into
your system Python using pip.

If you need to install pip: </translate>

$ sudo easy_install pip

<translate> Install pycollada: </translate>

$ sudo pip install pycollada

<translate> If you are using a binary version of FreeCAD, you can tell pip to
install pycollada into the site-packages inside FreeCAD.app: </translate>

$ pip install --target="/Applications/FreeCAD.app/Contents/lib/python2.7/site-packages" pycollada

or after downloading the pycollada code

$ export PYTHONPATH=/Applications/FreeCAD\ 0.16.6706.app/Contents/lib/python2.7/site-packages

$ python setup.py install --prefix=/Applications/FreeCAD\ 0.16.6706.app/Contents

<translate>

IfcOpenShell
homepage: http://www.ifcopenshell.org (http://www.ifcopenshell.org)
license: LGPL
optional, needed to extend import abilities of IFC files

IFCOpenShell is a library currently in development, that allows to import (and
soon export) Industry foundation Classes (*.IFC) (http://en.wikipedia.org
/wiki/Industry_Foundation_Classes) files. IFC is an extension to the STEP
format, and is becoming the standard in BIM (http://en.wikipedia.org
/wiki/Building_information_modeling) workflows. When ifcopenshell is
correctly installed on your system, the FreeCAD Arch Module (/wiki
/index.php?title=Arch_Module) will detect it and use it to import IFC files,
instead of its built-in rudimentary importer. Since ifcopenshell is based on
OpenCasCade, like FreeCAD, the quality of the import is very high, producing
high-quality solid geometry.

Installation

Since ifcopenshell is pretty new, you'll likely need to compile it yourself.
Linux

You will need a couple of development packages installed on your system in
order to compile ifcopenshell: </translate>

liboce-*-dev

python-dev

swig

<translate> but since FreeCAD requires all of them too, if you can compile
FreeCAD, you won't need any extra dependency to compile IfcOpenShell.

Grab the latest source code from here: </translate>

svn co https://svn.code.sf.net/p/ifcopenshell/svn/trunk ifcopenshell ifcopenshell

Manual - FreeCAD Documentation

236 von 244

<translate> or </translate>

svn co https://ifcopenshell.svn.sourceforge.net/svnroot/ifcopenshell ifcopenshell

<translate> The build process is very easy: </translate>

mkdir ifcopenshell-build

cd ifcopenshell-build

cmake ../ifcopenshell/cmake

<translate> or, if you are using oce instead of opencascade: </translate>

cmake -DOCC_INCLUDE_DIR=/usr/include/oce ../ifcopenshell/cmake

<translate> Since ifcopenshell is made primarily for Blender, it uses python3 by
default. To use it inside FreeCAD, you need to compile it against the same
version of python that is used by FreeCAD. So you might need to force the
python version with additional cmake parameters (adjust the python version
to yours): </translate>

cmake -DOCC_INCLUDE_DIR=/usr/include/oce -DPYTHON_INCLUDE_DIR=/usr/include/python2.7 -DPYTHON_LIBRARY

<translate> Then: </translate>

make

sudo make install

<translate> You can check that ifcopenshell was correctly installed by issuing
in a python console: </translate>

import IfcImport

<translate> If it returns nothing (no error message), then all is OK
Windows

Copied from the IfcOpenShell README file
Users are advised to use the Visual Studio .sln file in the win/ folder. For
Windows users a prebuilt Open CASCADE version is available from the
http://opencascade.org (http://opencascade.org) website. Download and
install this version and provide the paths to the Open CASCADE header and
library files to MS Visual Studio C++.

For building the IfcPython wrapper, SWIG needs to be installed. Please
download the latest swigwin version from http://www.swig.org/download.html
(http://www.swig.org/download.html) . After extracting the .zip file, please add
the extracted folder to the PATH environment variable. Python needs to be
installed, please provide the include and library paths to Visual Studio.

Links

Tutorial Import/Export IFC - compiling IfcOpenShell (/wiki
/index.php?title=Import/Export_IFC_-_compiling_IfcOpenShell)

Teigha Converter
homepage: http://www.opendesign.com/guestfiles/TeighaFileConverter
(http://www.opendesign.com/guestfiles/TeighaFileConverter)
license: freeware
optional, used to enable import and export of DWG files

The Teigha Converter is a small freely available utility that allows to convert

Manual - FreeCAD Documentation

237 von 244

< previous: Localisation (/wiki/index.php?title=Localisation)
next: Source documentation > (/wiki
/index.php?title=Source_documentation)

between several versions of DWG and DXF files. FreeCAD can use it to offer DWG
import and export, by converting DWG files to the DXF format under the
hood,then using its standard DXF importer to import the file contents. The
restrictions of the DXF importer (/wiki/index.php?title=Draft_DXF) apply.

Installation

On all platforms, only by installing the appropriate package from
http://www.opendesign.com/guestfiles/TeighaFileConverter
(http://www.opendesign.com/guestfiles/TeighaFileConverter) . After
installation, if the utility is not found automatically by FreeCAD, you might
need to set the path to the converter executable manually, in the menu Edit ->
Preferences -> Draft -> Import/Export options.

Index

(/wiki/index.php?title=Online_Help_Toc)
</translate>

Credits
FreeCAD would not be what it is without the generous contributions of many
people. Here's an overview of the people and companies who contributed to
FreeCAD over time. For credits for the third party libraries see the Third Party
Libraries (/wiki/index.php?title=Third_Party_Libraries) page.

Developement

Project managers

Lead developers of the FreeCAD project:

Jürgen Riegel (/wiki/index.php?title=User:Jriegel)
Werner Mayer (/wiki/index.php?title=User:Wmayer)
Yorik van Havre (/wiki/index.php?title=User:Yorikvanhavre)

Main developers

People who work regularly on the FreeCAD code (retrieved from
https://github.com/FreeCAD/FreeCAD/graphs/contributors (https://github.com
/FreeCAD/FreeCAD/graphs/contributors)):

Abdullah Tahiriyo (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=3232)
Alexander Golubev (Fat-Zer) (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=4325)
Bernd Hahnbach (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=2069)
Brad Collette (sliptonic) (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=708)
Daniel Falck (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=689)
Eivind Kvedalen (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=1546)

Manual - FreeCAD Documentation

238 von 244

f3nix (http://forum.freecadweb.org/memberlist.php?mode=viewprofile&
u=6125)
Ian Rees (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=3449)
Jan Rheinlaender (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=997)
Jonathan Wiedemann (rockn) (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=681)
Jose Luis Cercos Pita (sanguinariojoe) (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=574)
Logari81 (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=270)
Luke A. Parry (http://freecadamusements.blogspot.co.uk/)
mdinger (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=2928)
mghansen
Przemo Firszt(PrzemoF) (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=3666)
sgrogan (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=4252)
shoogen (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=765)
Stefan Tröger (ickby) (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=686)
tanderson69 (blobfish) (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=208)
vejmarie (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=7506)
Victor Titov (DeepSOIC) (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=3888)
wandererfan (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=1375)

Other coders

Other people who contributed code to the FreeCAD project:

jmaustpc (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=611)
j-dowsett (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=652)
keithsloan52 (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=930)
Joachim Zettler
Graeme van der Vlugt
Berthold Grupp
Georg Wiora (/wiki/index.php?title=User:Xorx)

Manual - FreeCAD Documentation

239 von 244

Martin Burbaum
Jacques-Antoine Gaudin
Ken Cline
Dmitry Chigrin
Remigiusz Fiedler (DXF-parser)
peterl94
jobermayr
ovginkel
triplus
tomate44
maurerpe
Johan3DV
Mandeep Singh
fandaL
jonnor
usakhelo
plaes
SebKuzminsky
jcc242
ezzieyguywuf
marktaff
poutine70
qingfengxia
dbtayl
itain
Barleyman

Companies

Companies which donated code or developer time:

Imetric 3D

Forum moderators

People in charge of the FreeCAD forum (http://forum.freecadweb.org)
(retrieved from http://forum.freecadweb.org/memberlist.php?mode=team
(http://forum.freecadweb.org/memberlist.php?mode=team)):

Daniel Falck (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=689)
DeepSOIC (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=3888)
ediloren (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=1783)
jmaustpc (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=611)

Manual - FreeCAD Documentation

240 von 244

jriegel (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=67)
Logari81 (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=270)
mrlukeparry (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=607)
onesz (http://forum.freecadweb.org/memberlist.php?mode=viewprofile&
u=729)
PrzemoF (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=3666)
r-frank (http://forum.freecadweb.org/memberlist.php?mode=viewprofile&
u=1529)
Renato Rebelo (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=3315)
rockn (http://forum.freecadweb.org/memberlist.php?mode=viewprofile&
u=681)
shoogen (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=765)
wmayer (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=69)
yorik (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=68)

Community

People from the community who put a lot of efforts in helping the FreeCAD
project either by being active on the forum, keeping a blog about FreeCAD,
making video tutorials, packaging FreeCAD for Windows/Linux/MacOS X,
writing a FreeCAD book... (listed by alphabetical order) (retrieved from
http://forum.freecadweb.org/memberlist.php?mode=&sk=d&sd=d#memberlist
(http://forum.freecadweb.org/memberlist.php?mode=&
sk=d&sd=d#memberlist))

bejant (http://forum.freecadweb.org/memberlist.php?mode=viewprofile&
u=1940)
Brad Collette (http://www.packtpub.com/freecad-solid-modeling-
with-python/book)
cblt2l (http://forum.freecadweb.org/memberlist.php?mode=viewprofile&
u=251)
cox (http://forum.freecadweb.org/memberlist.php?mode=viewprofile&
u=4523)
Daniel Falck (http://opensourcedesigntools.blogspot.com/)
Eduardo Magdalena (/wiki/index.php?title=User:Emagdalena)
hobbes1069 (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=725)
jdurston (5needinput) (http://www.youtube.com/user/5needinput)
John Morris (butchwax) (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=861)

Manual - FreeCAD Documentation

241 von 244

Kwahooo (http://freecad-tutorial.blogspot.com/)
lhagan (http://forum.freecadweb.org/memberlist.php?mode=viewprofile&
u=108)
marcxs (http://forum.freecadweb.org/memberlist.php?mode=viewprofile&
u=1047)
Mario52 (/wiki/index.php?title=User:Mario52)
Normandc (/wiki/index.php?title=User:Normandc)
peterl94 (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=1819)
pperisin (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=356)
Quick61 (/wiki/index.php?title=User:Quick61)
Renatorivo (/wiki/index.php?title=User:Renatorivo)
Rockn (/wiki/index.php?title=User:Rockn)
triplus (http://forum.freecadweb.org/memberlist.php?mode=viewprofile&
u=782)
ulrich1a (http://forum.freecadweb.org
/memberlist.php?mode=viewprofile&u=1928)

Documentation writers

People who wrote the documentation on this wiki (/wiki
/index.php?title=Main_Page):

Renato Rivoira (renatorivo)
Honza32
Hervé Blorec
Eduardo Magdalena
piffpoof
Wurstwasser
Roland Frank (r-frank)
bejant
Ediloren
Isaac Ayala

Translators

People who helped to translate the FreeCAD application (retrieved from
https://crowdin.com/project/freecad (https://crowdin.com/project/freecad)):

Gerhard Scheepers
wbrwbr2011
hanhsuan
hicarl
fandaL
Peta T
Zdeněk Havlík
Jodbe

Manual - FreeCAD Documentation

242 von 244

Peter Hageman
Vilfredo
Bruno Gonçalves Pirajá
Timo Seppola
rako
Pasi Kukkola
Ettore Atalan
nikoss
yang12
totyg
htsubota
asakura
Masaya Ootsuki
Jiyong Choi
Bartlomiej Niemiec
trzyha
bluecd
Miguel Morais
Nicu Tofan
Victor Radulescu
Angelescu Constantin
sema
Николай Матвеев
pinkpony
Alexandre Prokoudine
Марко Пејовић
Marosh
Peter Klofutar
Raulshc
javierMG
Lars
kunguz
Igor
Федір

Addons developers

Developers of FreeCAD addons (retrieved from https://github.com/FreeCAD
/FreeCAD-addons (https://github.com/FreeCAD/FreeCAD-addons)):

microelly2
hamish2014
jreinhardt
jmwright

Manual - FreeCAD Documentation

243 von 244

cblt2l
javierMG
looooo
shaise
marmni
Maaphoo
Rentlau

Categories (/wiki/index.php?title=Special:Categories):
Pages with syntax highlighting errors (/wiki
/index.php?title=Category:Pages_with_syntax_highlighting_errors&
action=edit&redlink=1)
User Documentation/en (/wiki
/index.php?title=Category:User_Documentation/en)
User Documentation (/wiki/index.php?title=Category:User_Documentation)
Poweruser Documentation (/wiki
/index.php?title=Category:Poweruser_Documentation)
Python Code (/wiki/index.php?title=Category:Python_Code)
Tutorials (/wiki/index.php?title=Category:Tutorials)
Poweruser Documentation/en (/wiki
/index.php?title=Category:Poweruser_Documentation/en)
Python Code/en (/wiki/index.php?title=Category:Python_Code/en)
Developer Documentation (/wiki
/index.php?title=Category:Developer_Documentation)
Developer Documentation/en (/wiki
/index.php?title=Category:Developer_Documentation/en)
Developer/en (/wiki/index.php?title=Category:Developer/en)

Community
Github (https://github.com/FreeCAD/FreeCAD)
Facebook (https://www.facebook.com/FreeCAD)
Google+ (https://plus.google.com/u/0/communities/103183769032333474646)
Learn
Tutorials (/wiki/?title=Tutorials)
Youtube videos (https://www.youtube.com/results?search_query=freecad)
Stack Exchange (http://area51.stackexchange.com/proposals/88434/freecad)
Help the project
How can I help? (/wiki/?title=Help_FreeCAD)
 Donate! (/wiki/?title=Donate)
Translate (https://crowdin.com/project/freecad)
Code
Building from source (/wiki/?title=Compiling)
C++ & Python API (/api/)
License information (/wiki/?title=Licence)

Manual - FreeCAD Documentation

244 von 244

